ECE 490: Introduction to Optimization
Fall 2018
Homework 1
Instructor: Bin Hu
Due date: September 13, 2018
1.
(a) Recall that a differentiable function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is L-smooth if for all $x, y \in \mathbb{R}^{p}$ the following inequality holds

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
$$

Prove that if f is L-smooth, then the following inequality holds for all $x, y \in \mathbb{R}^{p}$

$$
f(x) \leq f(y)+\nabla f(y)^{\top}(x-y)+\frac{L}{2}\|x-y\|^{2} .
$$

(b) Suppose f is L-smooth and m-strongly convex. Prove the following inequality holds for all $x, y \in \mathbb{R}^{p}$

$$
(\nabla f(x)-\nabla f(y))^{\top}(x-y) \geq \frac{m L}{m+L}\|x-y\|^{2}+\frac{1}{m+L}\|\nabla f(x)-\nabla f(y)\|^{2}
$$

(c) Suppose $a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$, and I is a $p \times p$ identity matrix. Prove that the matrix $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ is positive semidefinite if and only if $\left[\begin{array}{cc}a I & b I \\ b I & c I\end{array}\right]$ is positive semidefinite.
2. Suppose f is L-smooth and m-strongly convex.
(a) We know there exists at least one global min x^{*} for f. Prove that such a global min is unique.
(b) Recall that if there exists $0<\rho<1$ and $\lambda \geq 0$ such that

$$
\left[\begin{array}{cc}
1-\rho^{2} & -\alpha \\
-\alpha & \alpha^{2}
\end{array}\right]+\lambda\left[\begin{array}{cc}
-2 m L & m+L \\
m+L & -2
\end{array}\right]
$$

is a negative semidefinite matrix, then the gradient method $x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right)$ satisfies $\left\|x_{k}-x^{*}\right\| \leq \rho^{k}\left\|x_{0}-x^{*}\right\|$. Apply this condition to show the gradient method with a stepsize $0<\alpha<\frac{2}{L}$ satisfies

$$
\left\|x_{k}-x^{*}\right\| \leq(\max \{|1-m \alpha|,|1-L \alpha|\})^{k}\left\|x_{0}-x^{*}\right\|
$$

(Hint: See the end of the note for Lecture 2. The matrix $\left[\begin{array}{cc}1-\rho^{2} & -\alpha \\ -\alpha & \alpha^{2}\end{array}\right]+\lambda\left[\begin{array}{cc}-2 m L & m+L \\ m+L & -2\end{array}\right]$ is negative semidefinite if and only if

$$
\begin{aligned}
\rho^{2} & \geq 1-2 m L \lambda-\frac{(\lambda(m+L)-\alpha)^{2}}{\alpha^{2}-2 \lambda} \\
\lambda & \geq \frac{\alpha^{2}}{2}
\end{aligned}
$$

Now set $\lambda=\frac{1+t}{2} \alpha^{2}$ with some $t>0$. Clearly $\lambda \geq \frac{\alpha^{2}}{2}$. Substituting $\lambda=\frac{1+t}{2} \alpha^{2}$ to the first inequality $\rho^{2} \geq 1-2 m L \lambda-\frac{(\lambda(m+L)-\alpha)^{2}}{\alpha^{2}-2 \lambda}$ leads to an inequality $\rho^{2} \geq a+\frac{b^{2}}{t}+c^{2} t$ where a, b, and c have to be calculated by you. Now choose $t=\frac{|b|}{|c|}$ to minimize $a+\frac{b^{2}}{t}+c^{2}$ and you will obtain the desired bound for ρ.)

