
ECE 490: Introduction to Optimization Fall 2018

Homework 2

Instructor: Bin Hu Due date: September 27, 2018

1. In this problem, you will be asked to perform several calculations, and these calcula-
tions eventually lead to the convergence rate proof for Nesterov’s accelerated method applied
to smooth strongly-convex objective functions. Recall Nesterov’s method is

xk+1 = xk + β(xk − xk−1)− α∇f((1 + β)xk − βxk−1)

which can also be written as

ξk+1 = Aξk +Buk

vk = Cξk

uk = ∇f(vk)

where A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, C =

[
(1 + β)I −βI

]
, and ξk =

[
xk
xk−1

]
.

(a) Assume f is L-smooth and m-strongly convex. By L-smoothness and m-strong con-
vexity, we have

f(xk)− f(xk+1) = f(xk)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)T(xk − vk) +
m

2
‖xk − vk‖2 +∇f(vk)T(vk − xk+1)−

L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X1

 xk − x∗
xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)T(xk − vk) + m

2
‖xk − vk‖2 +∇f(vk)T(vk −

xk+1) − L
2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. You task is figuring

out this symmetric matrix X1.

(b) Similarly, by L-smoothness and m-strong convexity, we have

f(x∗)− f(xk+1) = f(x∗)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)T(x∗ − vk) +
m

2
‖x∗ − vk‖2 +∇f(vk)T(vk − xk+1)−

L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X2

 xk − x∗
xk−1 − x∗
∇f(vk)


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The last step in the above derivation requires substituting xk+1 = (1+β)xk−βxk−1−α∇f(vk)
and vk = Cξk into the second-to-last line ∇f(vk)T(x∗ − vk) + m

2
‖x∗ − vk‖2 +∇f(vk)T(vk −

xk+1) − L
2
‖vk − xk+1‖2 and rewriting the resultant quadratic function. You task is figuring

out this symmetric matrix X2.

(c) Now based on the inequalities in (a) and (b), you can simply choose X = ρ2X1 + (1−
ρ2)X2 for any 0 < ρ < 1, and we have xk − x∗

xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)

 ≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

Based on the testing condition presented in the class, if there exists P ≥ 0 such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0 (1)

then the following inequality holds

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2(ξk − ξ∗)TP (ξk − ξ∗) ≤

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)


≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

which directly leads to the linear convergence rate for Nesterov’s method:

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗) + f(xk+1)− f(x∗) ≤ ρ2
(
(ξk − ξ∗)TP (ξk − ξ∗) + f(xk)− f(x∗)

)
.

(2)

Finding P to satisfy (1) is not trivial. Your task is to show that (1) holds for P =

1
2

[ √
LI

(
√
m−

√
L)I

] [√
LI (

√
m−

√
L)I
]
≥ 0, ρ2 = 1 −

√
m
L

, and X = ρ2X1 + (1 − ρ2)X2

(X1 and X2 are the answers you get in (a) and (b)) when α = 1
L

and β =
√
L−
√
m√

L+
√
m

. In your

calculation, you are allowed to directly use (without proof) the following fact:

The matrix

c1 c2 c3
c2 c4 c5
c3 c5 c6

 is negative semidefinite if and only if

c1I c2I c3I
c2I c4I c5I
c3I c5I c6I

 is negative

semidefinite.
(Hint: The calculation here can be lengthy. So you are allowed to use some symbolic

toolbox to help as long as you turn in the code.)

(d) Now based on your calculations, you know (2) holds. Since P ≥ 0, you can then get

f(xk)− f(x∗) ≤
(

1−
√
m

L

)k (
(ξ0 − ξ∗)TP (ξ0 − ξ∗) + f(x0)− f(x∗)

)
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Your task is using the above bound to show that one can choose T = O(
√

L
m

log(1
ε
)) to

guarantee f(xT )− f(x∗) ≤ ε.

2. Programming Assignment
(a) First, you are asked to implement the gradient method, Nesterov’s method, and

Heavy-ball method to solve the positive definite quadratic minimization problem:

min
x∈Rp

1

2
xTQx+ qTx+ r (3)

where Q is positive definite. A Matlab script that you can use to generate Q, q, and r is
provided on the course website. In the code, you can specify the problem dimension p, the
strong convexity parameter m, and the smoothness parameter L (Notice always choosing
m < L). Then the code will generate (Q, q, r) for your given values of (m,L). You are also
allowed to use any other scientific computing language. But then you are asked to generate
(Q, q, r) using your own code if you choose to use other languages. For gradient method,
you should experiment two cases: α = 1

L
and α = 2

m+L
. For Nesterov’s method, choose

α = 1
L

and β =
√
L−
√
m√

L+
√
m

. For Heavy-ball method, choose α = 4
(
√
L+
√
m)2

and β =
(√

L−
√
m√

L+
√
m

)2
.

Always start from the initial condition x0 = x−1 = (1; 1; . . . ; 1)T You are asked to turn in
plots of the progression of objective values (relative to the minimum) for various problem
sizes (p = 100; 500) and (m,L) values (m = 1, L = 10; m = 0.1, L = 1000). Notice for
this quadratic problem, the optimal point x∗ = −Q−1q can be directly computed when the
dimension p is not that high. This can be used when you plot the progression of objective
values relative to the minimum. The y axis for your plots should be in log scale. You can
try different iteration number (e.g. k = 1000) until the algorithm converges. Then briefly
discuss your findings relative to the convergence rate theory.

(b) In (a), you should observe that Heavy-ball method works well for the quadratic
problem. Here you are asked to run the three algorithms for another problem. Consider a
one-dimensional function whose gradient is defined as: ∇f(x) = 25x for x < 1, ∇f(x) =
x + 24 for 1 ≤ x < 2, and ∇f(x) = 25x − 24 for x ≥ 2. This function is 25-smooth and
1-strongly convex (L = 25 and m = 1). Again, for gradient method, you should experiment

two cases: α = 1
L

and α = 2
m+L

. For Nesterov’s method, choose α = 1
L

and β =
√
L−
√
m√

L+
√
m

.

For Heavy-ball method, choose α = 4
(
√
L+
√
m)2

and β =
(√

L−
√
m√

L+
√
m

)2
. Always start from the

initial condition 3.07 ≤ x0 = x−1 ≤ 3.46. You are asked to turn in plots of the progression
of objective values. No need to plot things in log scale this time. Then briefly discuss your
findings. Does Heavy-ball method still converge?
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