1. The BFGS method iterates as \(x_{k+1} = x_k - \alpha_k H_k^{-1} \nabla f(x_k) \). The matrix \(H_k \) is iterated by the formula
\[
H_{k+1} = H_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{H_k s_k s_k^T H_k}{s_k^T H_k s_k}
\]
where \(s_k = x_{k+1} - x_k \) and \(y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \). When implementing the BFGS method, it will be better to directly update \(H_k^{-1} \) other than first obtaining \(H_k \) and then solving \(H_k^{-1} \nabla f(x_k) \). Your task is to show the following iteration formula for \(H_k^{-1} \) by manipulating (1):
\[
H_{k+1}^{-1} = \left(I - \frac{s_k y_k^T}{y_k^T s_k} \right) H_k^{-1} \left(I - \frac{y_k s_k^T}{y_k^T s_k} \right) + \frac{s_k s_k^T}{y_k^T s_k}
\]
(Hint: Use the Sherman-Morrison-Woodbury formula (or the so-called matrix inversion lemma): \((A + UV^T)^{-1} = A^{-1} - A^{-1}U(I + VT A^{-1}U)^{-1}VT A^{-1}\) where \(A \in \mathbb{R}^{n \times n}, U,V \in \mathbb{R}^{n \times d}\) are matrices such that \(A + UV^T \) is nonsingular.)

2. Programming Assignment
(a) First, you are asked to implement the gradient method with Armijo rule and the BFGS method to solve the positive definite quadratic minimization problem:
\[
\min_{x \in \mathbb{R}^p} \frac{1}{2} x^T Q x + q^T x + r
\]
where \(Q \) is positive definite. Generate \(Q, q, \) and \(r \) via the same code that you used to generate \(Q, q, \) and \(r \) in Homework 2. For the gradient method, you should experiment the Armijo rule and compare it with the constant stepsize case where \(\alpha = \frac{1}{L} \). Fix \(\alpha_0 = \frac{2}{L} \). Try a few choices of \(\sigma \) and \(\beta \) and plot the best case. For the BFGS method, also use the Armijo rule. Specifically, choose \(\alpha = \alpha_0 \beta^m \) where \(m \) is the smallest integer such that
\[
f(x_k - \alpha_0 \beta^m H_k^{-1} \nabla f(x_k)) \leq f(x_k) - \sigma \alpha_0 \beta^m \nabla f(x_k)^T H_k^{-1} \nabla f(x_k)
\]
Fix \(\alpha_0 = 1 \). Try a few choices of \(\beta \) and \(\sigma \) and plot the best case. Always start from the initial condition \(x_0 = x_{-1} = (1; 1; \ldots; 1)^T \). You are asked to turn in plots of the progression of objective values (relative to the minimum) for \(p = 200 \) and various choices of \((m, L)\) values \((m = 1, L = 10; m = 0.1, L = 1000)\). Notice for this quadratic problem, the optimal point
$x^* = -Q^{-1}q$ can be directly computed when the dimension p is not that high. This can be used when you plot the progression of objective values relative to the minimum. The y axis for your plots should be in log scale. You can try different iteration number (e.g. $k = 1000$) until the algorithm converges. Then briefly discuss your findings.

(b) Here you are asked to implement the gradient method and the BFGS method for a non-convex function. Consider the Rosenbrock function

$$f(x, y) = 100(y - x^2)^2 + (1 - x)^2$$

This function has a unique stationary point at $(1, 1)$ which is also the global min. Implement the gradient method and the BFGS method with Armijo rule. Now you are asked to experiment various choices of α_0, σ, and β. First start with the initial condition $(1.2, 1.2)$ and then try another initial condition $(-1.2, 1)$. Does the initial condition matter? Which method performs better? Discuss your findings.