ECE 490: Introduction to Optimization
Fall 2018

Homework 3

Instructor: Bin Hu
Due date: October 25, 2018

1. The BFGS method iterates as $x_{k+1}=x_{k}-\alpha_{k} H_{k}^{-1} \nabla f\left(x_{k}\right)$. The matrix H_{k} is iterated by the formula

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}-\frac{H_{k} s_{k} s_{k}^{\top} H_{k}}{s_{k}^{\top} H_{k} s_{k}} \tag{1}
\end{equation*}
$$

where $s_{k}=x_{k+1}-x_{k}$ and $y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$. When implementing the BFGS method, it will be better to directly update H_{k}^{-1} other than first obtaining H_{k} and then solving $H_{k}^{-1} \nabla f\left(x_{k}\right)$. Your task is to show the following iteration formula for H_{k}^{-1} by manipulating (1):

$$
\begin{equation*}
H_{k+1}^{-1}=\left(I-\frac{s_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}\right) H_{k}^{-1}\left(I-\frac{y_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}} \tag{2}
\end{equation*}
$$

(Hint: Use the Sherman-Morrison-Woodbury formula (or the so-called matrix inversion lemma): $\left(A+U V^{\top}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{\top} A^{-1} U\right)^{-1} V^{\top} A^{-1}$ where $A \in \mathbb{R}^{n \times n}, U, V \in \mathbb{R}^{n \times d}$ are matrices such that $A+U V^{\top}$ is nonsingular.)
2. Programming Assignment
(a) First, you are asked to implement the gradient method with Armijo rule and the BFGS method to solve the positive definite quadratic minimization problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} \frac{1}{2} x^{\boldsymbol{\top}} Q x+q^{\boldsymbol{\top}} x+r \tag{3}
\end{equation*}
$$

where Q is positive definite. Generate Q, q, and r via the same code that you used to generate Q, q, and r in Homework 2. For the gradient method, you should experiment the Armijo rule and compare it with the constant stepsize case where $\alpha=\frac{1}{L}$. Fix $\alpha_{0}=\frac{2}{L}$. Try a few choices of σ and β and plot the best case. For the BFGS method, also use the Armijo rule. Specifically, choose $\alpha=\alpha_{0} \beta^{m}$ where m is the smallest integer such that

$$
\begin{equation*}
f\left(x_{k}-\alpha_{0} \beta^{m} H_{k}^{-1} \nabla f\left(x_{k}\right)\right) \leq f\left(x_{k}\right)-\sigma \alpha_{0} \beta^{m} \nabla f\left(x_{k}\right)^{\top} H_{k}^{-1} \nabla f\left(x_{k}\right) \tag{4}
\end{equation*}
$$

Fix $\alpha_{0}=1$. Try a few choices of β and σ and plot the best case. Always start from the initial condition $x_{0}=x_{-1}=(1 ; 1 ; \ldots ; 1)^{\top}$. You are asked to turn in plots of the progression of objective values (relative to the minimum) for $p=200$ and various choices of (m, L) values ($m=1, L=10 ; m=0.1, L=1000$). Notice for this quadratic problem, the optimal point
$x^{*}=-Q^{-1} q$ can be directly computed when the dimension p is not that high. This can be used when you plot the progression of objective values relative to the minimum. The y axis for your plots should be in \log scale. You can try different iteration number (e.g. $k=1000$) until the algorithm converges. Then briefly discuss your findings.
(b) Here you are asked to implement the gradient method and the BFGS method for a non-convex function. Consider the Rosenbrock function

$$
f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2}
$$

This function has a unique stationary point at $(1,1)$ which is also the global min. Implement the gradient method and the BFGS method with Armijo rule. Now you are asked to experiment various choices of α_{0}, σ, and β. First start with the initial condition $(1.2,1.2)$ and then try another initial condition $(-1.2,1)$. Does the initial condition matter? Which method performs better? Discuss your findings.

