1. Given $x \in \mathbb{R}^{p}$, we denote its i-th entry as x^{i}. Suppose $X=\left\{x: a^{i} \leq x^{i} \leq b^{i}, \forall i \in\right.$ $\{1,2, \ldots, p\}\}$. For an arbitrary $y \in \mathbb{R}^{p}$, what is the projection of y onto X ? Denote the projection of y onto X as $[y]_{+}$. Write out each entry of $[y]_{+}$as a function of y^{i}, a^{i}, and b^{i}.
2. Programming Assignment

Implement ISTA for solving the following LASSO problem

$$
\min _{x \in \mathbb{R}^{p}} \frac{1}{2}\|A x-b\|^{2}+\mu\|x\|_{1}
$$

where $A \in \mathbb{R}^{m \times p}, x \in \mathbb{R}^{p}$, and $b \in \mathbb{R}^{m} . \mu \geq 0$ is some positive parameter; m should be significantly smaller than p (which means the number of data points is much less than the number of features and this is typical for biological applications). The data matrix A and the vector b can be randomly generated.
(a) Please explicitly write down the algorithm steps for ISTA.
(b) For a given problem instance (i.e., fixed A and b), please consider using different values of μ and discuss the results (i.e., sparsity (how many entries of your solution are zero), error $\frac{1}{2}\left\|A x^{*}-b\right\|^{2}$, etc). Also discuss how the stepsize selection affects your results. Vary p and m in your simulations. Use $p=500$ and $p=1500$. Try $m \approx \frac{1}{3} p$ and $m \approx \frac{1}{4} p$. Are the results consistent? Notice for the above problem we may not have strong convexity and the convergence can be sublinear.

