ECE 490: Introduction to Optimization Homework 5

Instructor: Bin Hu

1

(a) Consider the constrained minimization problem:

minimize $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$ subject to $x_1 + x_2 + x_3 + x_4 + x_5 = 5$.

Determine all the local mins for the above problem.

(b) Consider minimizing the function $f(x) = \frac{1}{2} ||x||^2 + \frac{1}{2} (a^{\mathsf{T}} x - b)^2$ where $a \in \mathbb{R}^p$, $b \in \mathbb{R}$, and $x \in \mathbb{R}^p$. This problem can be rewritten as

minimize $\frac{1}{2} ||x||^2 + \frac{1}{2}(y-b)^2$ subject to $a^{\mathsf{T}}x = y$

Write out the Lagrangian $L(x, y, \lambda)$ for the above problem and calculate the related dual function $D(\lambda) = \min_{x,y} L(x, y, \lambda)$.

2. (a) Consider the basis pursuit problem

$$\begin{array}{ll} \text{minimize} & \|x\|_1\\ \text{subject to} & Ax = b \end{array}$$

This problem can be rewritten as the following form:

minimize
$$f(x) + g(y)$$

subject to $x - y = 0$ (1)

where f(x) is an indicator function of the set $\{x : Ax = b\}$, and $g(y) = ||y||_1$. Recall the indicator function satisfies f(x) = 0 if Ax = b and $f(x) = \infty$ if $Ax \neq b$. The augmented Lagrangian function is given as

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{\mathsf{T}}(x - y) + \frac{\rho}{2} ||x - y||^2$$
(2)

Your task is to write out the ADMM update formula for (1) using the projection operator onto the set $\{x : Ax = b\}$ and the shrinkage operator. Specifically, write out $x_{k+1}, y_{k+1},$ and λ_{k+1} as functions of x_k , y_k , and λ_k . Simplify the arg min operation using the projection operator and the shrinkage operator.

(b) Consider the following least square problem $\min_x \sum_{i=1}^n \frac{1}{2} (a_i^{\mathsf{T}} x - b_i)^2$ where $a_i \in \mathbb{R}^p$, $b_i \in \mathbb{R}$, and $x \in \mathbb{R}^p$. This problem can be rewritten as

minimize $\sum_{i=1}^{n} f_i(x^i)$ subject to $x^i - y = 0, \forall i \in \{1, 2, \dots, n\}$

where $f_i(x^i) = \frac{1}{2}(a_i^{\mathsf{T}}x^i - b_i)^2$, and $x^i \in \mathbb{R}^p$ is a vector having the same dimension as a_i . The augmented Lagrangian is given by

$$L_{\rho} = \sum_{i=1}^{n} \left\{ f_i(x^i) + (\lambda^i)^{\mathsf{T}}(x^i - y) + \frac{\rho}{2} \|x^i - y\|^2 \right\}$$

Your task is to write out the ADMM update formula for the above problem. Specifically, express x_{k+1}^i , y_{k+1} , and λ_{k+1}^i as functions of x_k^i , y_k , λ_k^i , a_i , b_i and ρ .