ECE 490: Introduction to Optimization

Instructor: Bin Hu
Due date: December 11, 2018

1. Consider the constrained minimization problem:

$$
\begin{aligned}
\operatorname{minimize} & x^{2}+y^{2} \\
\text { subject to } & x-1 \geq 0 \\
& y+1 \geq 0
\end{aligned}
$$

What is the optimal solution for this problem?
Now apply the barrier function method that iterates as

$$
\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]=\underset{x, y}{\arg \min }\left\{x^{2}+y^{2}-\varepsilon_{k} \ln (x-1)-\varepsilon_{k} \ln (y+1)\right\}
$$

where ε_{k} decreases to 0 as k increases. Does the above barrier function converge? Prove your conclusion.
2. Consider the constrained minimization problem:

$$
\begin{aligned}
\operatorname{minimize} & x-2 y \\
\text { subject to } & 1+x-y^{2} \geq 0 \\
& y \geq 0
\end{aligned}
$$

What is the optimal solution for this problem?
Now apply the barrier function method that iterates as

$$
\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]=\underset{x, y}{\arg \min }\left\{x-2 y-\varepsilon_{k} \ln \left(1+x-y^{2}\right)-\varepsilon_{k} \ln (y)\right\}
$$

where ε_{k} decreases to 0 as k increases. Does the above barrier function converge? Prove your conclusion.
3. Programming Assignment

Consider the following linear programming problem

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b
\end{aligned}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, and $\operatorname{rank}(A)=n$. Use $m=100$ and $n=50$. Generate A, b, and c randomly. Make sure the rank of A is n. Implement the short-step interior point method covered in the class. Specifically, for every k, just perform one-step Newton update for $f_{\varepsilon_{k}}$ and then shrinks ε_{k} by a constant factor. Plot the results and discuss how ε_{k} affects the convergence. To make sure the problem is strictly feasible, you can just uniformly sample the entries of b from $[-2,-0.5]$. Then $x=0$ is a strictly feasible point for the problem.

