
ECE 490: Introduction to Optimization Fall 2018

Lecture 1
Unconstrained Optimization for Smooth Strongly-Convex Functions, Part I

Lecturer: Bin Hu, Date:08/30/2018

This lecture focuses on the unconstrained minimization problem

min
x∈Rp

f(x) (1.1)

where f : Rp → R is a differentiable function being L-smooth and m-strongly convex. A
point x∗ ∈ Rn is a global min of f if for all x ∈ Rn the following holds

f(x∗) ≤ f(x). (1.2)

We will answer the following three important questions:

1. Does a global min x∗ exist for f being smooth and strongly-convex? If it exists, is it
unique?

2. What algorithm shall we use to find the global min x∗ if it exists?

3. How does the algorithm perform?

In this lecture, for any x ∈ Rn, ‖x‖ just denotes the 2-norm of x.

1.1 Some definitions

A differentiable function f : Rp → R is L-smooth if for all x, y ∈ Rp the following inequality
holds

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (1.3)

One can prove that (this will be left as a homework problem) the definition of L-
smoothness leads to the following useful inequality holding for all x, y ∈ Rp

f(x) ≤ f(y) +∇f(y)T(x− y) +
L

2
‖x− y‖2. (1.4)

We say f is m-strongly convex (for some m > 0) if for all x, y ∈ Rp the following inequality
holds

f(x) ≥ f(y) +∇f(y)T(x− y) +
m

2
‖x− y‖2. (1.5)
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We provide some interpretations for the above two properties. Given any fixed y, the
right side of (1.4) provides a quadratic upper bound for f , and the right side of (1.5) provides
a quadratic lower bound for f . This means that f more or less behaves similar to a quadratic
function. Hence when f is L-smooth and m-strongly convex, the unconstrained optimization
problem should not be that hard. This is basically true. We will give a comprehensive
treatment for this case.

If f is L-smooth and m-strongly convex, one can show that (this is also going to be a
homework problem) the following inequality (the so-called co-coercivity property) holds for
all x, y ∈ Rn

(∇f(x)−∇f(y))T(x− y) ≥ mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2. (1.6)

The above inequality is equivalent to[
x− y

∇f(x)−∇f(y)

]T [ −2mLIp (m+ L)Ip
(m+ L)Ip −2Ip

] [
x− y

∇f(x)−∇f(y)

]
≥ 0

where the left side is in a quadratic form. The above inequality is going to be very useful!

1.2 Answer the first question: x∗ exists and is unique!

The existence of x∗ is typically shown by the following theorem, which is actually a corollary
of the extreme value theorem.

Theorem 1.1. If a continuous function f satisfies ‖f(x)‖ → ∞ as ‖x‖ → ∞, then a global
min for f exists.

When f is m-strongly convex, then it has a quadratic lower bound. Clearly ‖f(x)‖ → ∞
as ‖x‖ → ∞ (since the quadratic lower bound will blow to∞ as ‖x‖ → ∞ ). Then we know
x∗ exists.

Another useful theorem (called the optimality condition) is the following

Theorem 1.2. Suppose f is differentiable and x∗ is a global min of f . Then ∇f(x∗) = 0.

You will be asked to prove the above theorem in the homework.
Since we have already shown that x∗ exists for strongly convex f , now we will further show

x∗ is unique. Assume x∗1 and x∗2 are both global min for f . We have ∇f(x∗1) = ∇f(x∗2) = 0.
By (1.5), we have

f(x∗1) ≥ f(x∗2) +
m

2
‖x∗1 − x∗2‖2

f(x∗2) ≥ f(x∗1) +
m

2
‖x∗1 − x∗2‖2

Adding the above two inequalities leads to the conclusion ‖x∗1 − x∗2‖ ≤ 0. Hence x∗1 = x∗2.
Therefore the global min for f is unique.

Notice the existence and uniqueness of x∗ do not require the smoothness property. How-
ever, non-smooth problems are more difficult to solve, as we will see in later lectures.

1-2



ECE 490 Lecture 1 — 08/30/2018 Fall 2018

1.3 Answer the second question: Gradient method!

To find x∗, a classical method is the gradient decent method which iterates as

xk+1 = xk − α∇f(xk) (1.7)

where α is a prescribed constant (called stepsize) one has to determine beforehand. One
can choose any initial condition x0 ∈ Rn, and compute x1, x2, . . . , xk, . . .. Here we assume
given any x, one has the access to the first-order derivative information ∇f(x). Hence the
gradient method is a first-order optimization method.

The gradient method has the advantage that it only requires the first-order derivative.
In addition, when f is L-smooth and m-strongly convex, the gradient method is guaranteed
to converge at a linear rate to the optimal point x∗.

1.4 Answer the third question: Linear convergence!

One can show that the gradient method satisfies

‖xk − x∗‖ ≤ ρk‖x0 − x∗‖ (1.8)

for some 0 ≤ ρ < 1. In controls literature, the above convergence behavior is called expo-
nential convergence. However, in optimization literature, the above convergence behavior is
called linear convergence. The reason is that if one takes the log of ρk‖x0 − x∗‖, one gets
k log ρ + log‖x0 − x∗‖, which is a linear function of k. In this course, we will adopt the
terminology “linear convergence.”

Clearly the smaller ρ is, the faster xk converges to x∗. However, ρ cannot be arbitrarily
small. This means the convergence speed of the algorithm depends on the parameter choice
α and also the function properties (m and L).

The following theorem describes the dependence between ρ and (α,m,L).

Theorem 1.3. Suppose f is L-smooth and m-strongly convex. Let x∗ be the unique global
min. Given a stepsize α, if there exists 0 < ρ < 1 and λ ≥ 0 such that[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
(1.9)

is a negative semidefinite matrix, then the gradient method satisfies ‖xk − x∗‖ ≤ ρk‖x0 − x∗‖.

The proof of the above theorem is very important and can be generalized in many different
ways. So we will prove the above theorem in next lecture.

How to apply the above theorem? Given (m,L), one can use the theorem to determine
what value of α leads to the smallest ρ (the fastest convergence rate) by showing (1.9) is
a negative semidefinite matrix. Recall that A ∈ Rp×p is positive semidefinite (p.s.d.) if
xTAx ≥ 0 for any x ∈ Rp. Similarly, A ∈ Rp×p is negative semidefinite (n.s.d.) if xTAx ≤ 0
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for any x ∈ Rp. How to determine whether A is p.s.d? General methods involve calculating
the eigenvalues of A or the leading principle minors. However, in many situations, it is just

obvious. For example, the inequality (a− cb)2 ≥ 0 just states that

[
1 −c
−c c2

]
is p.s.d. since

(a− cb)2 =

[
a
b

]T [
1 −c
−c c2

] [
a
b

]
. In later lectures, we will see a lot of examples of this flavor.
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