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In the last lecture, we started to talk about optimization of smooth strongly-convex
functions. When the objective function is smooth and only convex (not strongly-convex), the
convergence rate of the gradient method becomes O(1/k). In this lecture, we will talk about
Nesterov’s method that achieves an accelerated rate O(1/k2) for smooth convex objective
functions.

10.1 Nesterov’s Method for Convex Functions

The gradient method achieves the rate O(1/k) by adopting a constant stepsize. However,
Nesterov’s method relies on a time-varying momentum to achieve the rate O(1/k2). Specif-
ically, given L-smooth convex f , Nesterov’s method iterates as follows:

xk+1 = xk − α∇f((1 + βk)xk − βkxk−1) + βk(xk − xk−1) (10.1)

where α = 1
L

and βk is a prescribed sequence. One typical choice is setting βk = k−1
k+2

.
Another popular choice is defining βk recursively as follows.

ζ−1 = 0, ζk+1 =
1 +

√
1 + 4ζ2k
2

, βk =
ζk−1 − 1

ζk
.

The sequence {ζk} satisfies ζ2k − ζk = ζ2k−1. Due to the time-varying nature of βk, we need
to use the following time-varying model for (10.1):

ξk+1 = Akξk +Bkuk

vk = Ckξk

uk = ∇f(vk)

(10.2)

We choose Ak =

[
(1 + βk)I −βkI

I 0

]
, Bk =

[
−αI

0

]
, Ck =

[
(1 + βk)I −βkI

]
, and ξk =[

xk
xk−1

]
. Then vk = Ckξk =

[
(1 + βk)I −βkI

] [ xk
xk−1

]
= (1 + βk)xk − βkxk−1, and uk =

∇f(vk) = ∇f((1 + βk)xk − βkxk−1). We can see Bk actually does not depend on k. But if
we let α depend on k, then we need B to depend on k. So (10.2) is general. We will modify
the dissipation inequality to provide a sublinear rate analysis for (10.2).
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10.2 How to prove the rate O(1/k2)?

We can still use the dissipation inequality technique to prove such a rate. The dissipation
inequality appeared in the previous lectures has the following form:

V (ξk+1)− ρ2V (ξk) ≤ S(ξk, uk)

We can use the dissipation inequality to prove various results:

1. If S(ξk, uk) ≤ 0, then the dissipation inequality becomes V (ξk+1)− ρ2V (ξk) ≤ 0. This
is a linear convergence in V . We have used this type of arguments to show the linear
convergence of the gradient method.

2. If S(ξk, uk) ≤ −(f(xk+1) − f(x∗)) + ρ2(f(xk) − f(x∗)), we have V (ξk+1) + f(xk+1) −
f(x∗) ≤ ρ2(V (ξk)+f(xk)−f(x∗)). This is a linear convergence in V (ξk)+f(xk)−f(x∗).
We have shown the linear convergence of Nesterov’s method via this type of arguments.

3. Sometimes the algorithms are stochastic. Then the supply rate condition also has to
take the randomness into accounts. If ES(ξk, uk) ≤M , then the dissipation inequality
leads to a bound in the form of EV (ξk) ≤ ρ2kEV (ξ0) + M

1−ρ2 . This means the algorithm
goes to a small ball around the optimal solution at a linear rate. We have used this
argument to show the behaviors of the stochastic gradient method with a constant
stepsize.

4. If S(ξk, uk) ≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗)) and V = 0, then the dissipation
inequality leads to f(xk+1) − f(x∗) ≤ ρ2(f(xk) − f(x∗)). This is a linear convergence
in f(xk) − f(x∗). The linear convergence of the gradient method can also be proved
using such an argument.

5. If S(ξk, uk) ≤ f(x∗) − f(xk) and ρ2 = 1, then the dissipation inequality leads to the
inequality V (ξk+1) − V (ξk) + f(xk) − f(x∗) ≤ 0. Summing this inequality leads to∑k

t=0(f(xt) − f(x∗)) ≤ V (ξ0) − V (ξk+1). We have used this argument to show that
the gradient method is guaranteed to converge at the sublinear rate O(1/k) when the
objective function is smooth and convex.

For all these above cases, we construct the dissipation inequality by finding a P matrix
satisfying the following condition:[

ATPA− ρ2P ATPB
BTPA BTPB

]
−X ≤ 0. (10.3)

Now for the general model (10.2), (A,B,C) depend on k. Therefore, we need to modify
the above condition as [

AT
kPk+1Ak − Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
−Xk ≤ 0. (10.4)
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The key question is what Xk we should use. We can use the same arguments for Problem
1 in HW2 to show  xk − x∗

xk−1 − x∗
∇f(yk)

T

Mk

 xk − x∗
xk−1 − x∗
∇f(yk)

 ≤ f(xk)− f(xk+1)

 xk − x∗
xk−1 − x∗
∇f(yk)

T

Nk

 xk − x∗
xk−1 − x∗
∇f(yk)

 ≤ f(x∗)− f(xk+1)

where Nk and Mk directly depend on βk. Now we define f ∗ = f(x∗). If we choose Xk :=
µkMk + (µk+1 − µk)Nk for all k. then the supply rate S satisfies the condition

S(ξk, wk) =

[
ξk
wk

]T
Xk

[
ξk
wk

]
≤ µk(f(xk)− f ∗)− µk+1(f(xk+1)− f ∗).

which can be used to show the rate O(1/k2) if µk is chosen properly. Specifically, if we can
find positive semidefinite Pk and non-negative increasing sequence {µk} such that[

AT
kPk+1Ak − Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
− µkMk − (µk+1 − µk)Nk ≤ 0. (10.5)

then we will be able to use our standard dissipation inequality arguments to show

(ξk+1 − ξ∗)TPk+1(ξk+1 − ξ∗)− (ξk − ξ∗)TPk(ξk − ξ∗) ≤
[
ξk
wk

]T
Xk

[
ξk
wk

]
≤ µk(f(xk)− f ∗)− µk+1(f(xk+1)− f ∗).

This is equivalent to

(ξk+1 − ξ∗)TPk+1(ξk+1 − ξ∗) + µk+1(f(xk+1)− f ∗) ≤ (ξk − ξ∗)TPk(ξk − ξ∗) + µk(f(xk)− f ∗).

We can iterate the above inequality to show

µk(f(xk)− f ∗). ≤ (ξk − ξ∗)TPk(ξk − ξ∗) + µk(f(xk)− f ∗) ≤ (ξ0 − ξ∗)TP0(ξ0 − ξ∗) + µ0(f(x0)− f ∗).

If 1
µk

= O(1/k2), then we immediately obtain the rate O(1/k2) for Nesterov’s method.

Clearly, obtaining a rate O(1/k2) is more subtle than obtaining other rates due to the
fact that now we need to find a sequence of Pk and µk. A specific choice for Neseterov’s

method is setting µk := (ζk−1)
2 and Pk := L

2

[
ζk−1

1− ζk−1

] [
ζk−1 1− ζk−1

]
. We will not talk

about O(1/k2) rate in future lectures.
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10.3 Possible Generalizations

We have covered how to apply the dissipation inequality to obtain bounds in various forms.
Many more algorithms (ADMM, stochastic variance reduction, distributed optimization
methods, proximal algorithms, coordinate descent, etc) can be analyzed using the same
framework. We will cover some of these variants in later lectures, but our main focus will be
slowly shifted to other aspects of optimization. The iteration complexity theory only gives
high level guidelines for choosing algorithms at the beginning. If the goal is just solving one
particular instance of an optimization method, the iteration complexity theory may or may
not be that useful. Nevertheless, if the goal is to develop algorithms with provable guaran-
tees, the iteration complexity theory is much relevant. Finally, let’s discuss some possibilities
of tailoring dissipation inequality for your own research.

1. The most straightforward extension is to rewrite a new optimization method (that you
are interested in) as our general optimization model with some (A,B,C) and applying
our framework to analyze it. Here, once (A,B,C) are found, it is possible to follow
our routine to obtain some rate guarantees.

2. A more challenging task is to figure out X when looking at a new class of objective
functions. When f is not convex, the construction of X can be tricky and case-
dependent. Depending on the particular problems you are working on, you may have
to develop X by yourself. Some cutting edge research just focuses on developing such
X for neural networks. The good thing is that once you have developed X for a
particular class of f , other people can immediately use it and this X can be applied
to analyze many algorithms with different (A,B,C).
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