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So far we have talked about first-order optimization methods that only require evaluating
the gradient. In this lecture, we talk about Newton’s method which uses Hessian to accelerate
the convergence. The pure form of Newton’s method iterates as

xk+1 = xk − (∇2f(xk))
−1∇f(xk)

Depending on how efficient one can compute Hessian for a given practical problem., using
Hessian may or may not be a good idea in general. The main advantage of Newton’s method
is that it achieves superlinear convergence when it is initialized closed enough to a local min.
The convergence bound has a form:

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 < 1

This is much faster than the linear convergence rate bound ‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖.
Therefore, if we already have a rough solution for a local min, we can quickly refine this
rough solution and get an accurate solution by applying Newton’s method.

13.1 Interpretations of Newton’s Method

The gradient method xk+1 = xk − α∇f(xk) can be interpreted as follows. At each step k,
we are actually solving a quadratic minimization problem

xk+1 = arg min
x∈Rp

{
f(xk) +∇f(xk)

T(x− xk) +
1

2α
‖x− xk‖2

}
The quadratic cost

{
f(xk) +∇f(xk)

T(x− xk) + 1
2α
‖x− xk‖2

}
is just the sum of the Taylor

expansion of f at xk and an `2 regularizar. If we know f is L-smooth, then we know

f(x) ≤ f(xk) +∇f(xk)
T(x− xk) +

L

2
‖x− xk‖2

So the gradient method with α = 1
L

is actually minimizing the above quadratic upper bound
for f at each k.

Can we improve the optimization process by minimizing a better quadratic estimation of
f at each k? This natural question leads to Newton’s method. Specifically, the pure form of
Newton’s method iterates as

xk+1 = arg min
x∈Rp

{
f(xk) +∇f(xk)

T(x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

}
(13.1)
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At each step k, we estimate f by its second-order Taylor expansion f(xk) + ∇f(xk)
T(x −

xk)+ 1
2
(x−xk)T∇2f(xk)(x−xk) and then minimize this quadratic estimation. Intuitively, the

Taylor expansion gives a good local estimate for f but may not give a good global estimation.
Consequently, Newton’s method sometimes does not even converge if the iterates are too far
away from the optimal points.

13.2 A Rough Analysis of Newton’s Method

Here we sketch some non-rigorous analysis of Newton’s Method to offer some high level ideas
about how superlinear convergence is achieved. We have

‖xk+1 − x∗‖ = ‖xk − x∗ − (∇2f(xk))
−1∇f(xk)‖

= ‖(∇2f(xk))
−1
(
∇2f(xk)(xk − x∗)−∇f(xk)

)
‖

≤ ‖(∇2f(xk))
−1‖‖∇2f(xk)(xk − x∗)−∇f(xk) +∇f(x∗)‖

Consider a local min x∗ satisfying ∇f(x∗) = 0 and ∇f(x∗) > 0. When xk is really closed
to x∗, we expect that ∇f(xk) is also positive definite and ‖(∇2f(xk))

−1‖ is bounded above
by some positive constant β1. Let’s assume ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖. Then we can
bound the second term using the following relation:

∇f(xk)−∇f(x∗) =

∫ 1

0

∇2f(xk + γ(x∗ − xk))(̇xk − x∗)dγ

Specifically, we have

‖∇2f(xk)(xk − x∗)−∇f(xk) +∇f(x∗)‖

=‖
∫ 1

0

(∇2f(xk)−∇2f(xk + γ(x∗ − xk)))(̇xk − x∗)dγ‖

≤
∫ 1

0

‖∇2f(xk)−∇2f(xk + γ(x∗ − xk))‖‖xk − x∗‖dγ

≤M(

∫ 1

0

γdγ)‖xk − x∗‖2

=
M

2
‖xk − x∗‖2

Eventually we have

‖xk+1 − x∗‖ = ‖xk − x∗ − (∇2f(xk))
−1∇f(xk)‖

= ‖(∇2f(xk))
−1
(
∇2f(xk)(xk − x∗)−∇f(xk)

)
‖

≤ ‖(∇2f(xk))
−1‖‖∇2f(xk)(xk − x∗)−∇f(xk) +∇f(x∗)‖

≤ Mβ1

2
‖xk − x∗‖2

The above analysis is not rigorous and roughly explains the superlinear convergence of
Newton’s method.
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13.3 Issues of Newton’s Method and Some Fixes

The pure form of Newton’s method has some disadvantages.

1. The computation of the Hessian matrix can be expensive.

2. Denote dk = (∇2f(xk))
−1∇f(xk). To obtain dk, one typically needs to solve a linear

equation ∇2f(xk)dk = ∇f(xk). This can be expensive.

3. The Hessian may not be positive definite. Even worse, the Hessian may be singular
and (∇2f(xk))

−1 does not exist.

4. The pure form of Newton’s method does not have global convergence guarantees. If
it is initialized far away from the optimal solution, it may even diverge for a smooth
strongly-convex function f . See Page 107 of Moritz Hardt’s note on Convex Optimiza-
tion and Approximation for such an example.

In the next lecture, we will talk about the Quasi-Newton methods which partially fix the
first two issues. For the third issue, one typically perturb the Hessian matrix as∇2f(xk)+δkI
where δk is some positive number. When δk is sufficiently large, ∇2f(xk) + δkI is going to
become positive definite. There is a trade-off here. If we choose δk to be too large, then
we are almost just doing the gradient descent method and the Hessian information is not
efficiently used. In practice, one needs to carefully select δk for singular Hessian. To fix the
fourth issue, one can use the damped Newton xk+1 = xk − αk(∇2f(xk))

−1∇f(xk) where αk
is determined by the Armijo rule. So we just choose αk = βm where m is the smallest integer
such that

f
(
xk − βm(∇2f(xk))

−1∇f(xk)
)
≤ f(xk)− σβm∇f(xk)(∇2f(xk))

−1∇f(xk)

Here β < 1 is some prescribed positive number. Then one can show the damped Newton
has global convergence guarantees for smooth strongly-convex functions and self-concordant
functions.

13.4 Some Variants of Newton’s Method

We briefly mention a few variants for Newton’s method. One issue for Newton’s method is
that the quadratic function f(xk) +∇f(xk)

T(x−xk) + 1
2
(x−xk)T∇2f(xk)(x−xk) may only

be a good estimate for f when x is not far from xk. What if we enforce xk+1 to be not far
from xk in the update? This is the idea of the trust region method. At each step k, the trust
region method updates xk+1 as

xk+1 = arg min
‖x−xk‖≤∆k

{
f(xk) +∇f(xk)

T(x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

}
(13.2)
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So we restrict xk+1 to be in a trust region ‖x− xk‖ ≤ ∆k. The parameter ∆k can be tuned.
When ∆k is large, the trust region update behaves more similarly to Newton’s method. The
trust region method fixes the global convergence issue of Newton’s method to some extent. It
also gets a lot of recent attention due to its ability to escape saddle points. One can actually
show that the trust region method can escape strict saddle points under some assumptions.

One can also add higher order term ‖x− xk‖3 to the quadratic estimation f(xk) +
∇f(xk)

T(x− xk) + 1
2
(x− xk)T∇2f(xk)(x− xk). This is the idea of cubic regularization.
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