
ECE 490: Introduction to Optimization Fall 2018

Lecture 14
BFGS Method and Subgradient Method

Lecturer: Bin Hu, Date:10/18/2018

So far we have only talked about optimization of differentiable functions. What if the
objective function is not differentiable? Today we will talk about this case and introduce
the subgradient method. Before that, we will talk about one more method for optimization
of differentiable functions. Specifically, we will talk about the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) Method, which is the most popular Quasi-Newton method.

14.1 Quasi-Newton Methods

Quasi-Newton Methods are a family of methods that follow the idea of Newton’s Method
but estimate the Hessian ∇2f(xk) with some simpler matrix Hk. Specifically, Quasi-Newton
methods have the iteration form:

xk+1 = xk − αkH
−1
k ∇f(xk)

where Hk is some estimated version of ∇2f(xk), and the stepsize αk is typically determined
by Armijo rule.

Recall that the idea of Newton’s method is based on approximating the objective function
f(x) as a quadratic function via Taylor expansion:

f(x) ≈ f(xk) +∇f(xk)T(x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

What if we estimate ∇2f(xk) with some simpler matrix Hk? Specifically, we define

g(x) = f(xk) +∇f(xk)T(x− xk) +
1

2
(x− xk)THk(x− xk)

Then we hope g(x) ≈ f(x) and optimize g for this step. What properties should Hk have
such that g is a good estimate for f? It is reasonable to just enforce ∇f(xk) = ∇g(xk) and
∇f(xk−1) = ∇g(xk−1). The condition ∇f(xk) = ∇g(xk) is automatically satisfied. What
about ∇f(xk−1) = ∇g(xk−1)? This is equivalent to

Hk(xk − xk−1) = ∇f(xk)−∇f(xk−1) (14.1)

The above condition is called the secant equation. Therefore, we should choose Hk based on
this condition. There are infinitely many Hk satisfying this condition. Various choices of Hk

lead to different Quasi-Newton methods. We will talk about the most popular one, i.e. the
BFGS method.

14-1

ECE 490 Lecture 14 — 10/18/2018 Fall 2018

14.2 BFGS Method

We need Hk to be constructed in a way that it can be efficiently computed. It will be
nice if Hk can be computed by some iterative formula Hk = Hk−1 + Mk−1. Another nice
property we want Hk to have is the positive definiteness. If Hk is positive definite, we can at
least guarantee that the BFGS method is a decent method, i.e. f(xk+1) ≤ f(xk). Suppose
we choose H0 > 0 and then guarantee Mk ≥ 0. Then by induction we have the positive
definiteness of Hk. So one reasonable thing to do is to set up {Hk} using the following
iterative formula:

Hk+1 = Hk + akvkv
T
k + bkuku

T
k (14.2)

where vk ∈ Rp and uk ∈ Rp are some vectors. If H0 > 0, the above iterative formula
just guarantees Hk to be positive definite. How can we choose vk and uk to guarantee the
secant equation Hk+1(xk+1 − xk) = ∇f(xk+1) − ∇f(xk)? Let’s denote sk = xk+1 − xk and
yk = ∇f(xk+1)−∇f(xk). The secant equation becomes Hk+1sk = yk. Substituting this into
(14.2) leads to

yk = Hk+1sk = Hksk + akvkv
T
k sk + bkuku

T
k sk

Since vkv
T
k sk = vk(vTk sk) = (vTk sk)vk and uku

T
k sk = uk(uTk sk) = (uTk sk)uk, the above equation

is just equivalent to

yk −Hksk = ak(vTk sk)vk + bk(uTk sk)uk

How can we choose vk, uk, ak, and bk such that the above equation is satisfied? We can
choose vk = yk and ak(vTk sk) = 1 so that the first terms on the left and right sides exactly
match. Similarly, we can choose uk = Hksk and bk(uTk sk) = −1 so that the second terms on
the left and right sides exactly match. Therefore, we have vk = yk, uk = Hksk, ak = 1

yTksk
,

and bk = − 1
sTkHksk

. The iteration formula (14.2) becomes

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kHk

sTkHksk
(14.3)

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). This is exactly the BFGS method.
When implementing the BFGS method xk+1 = xk − αkH

−1
k ∇f(xk), it will be better to

directly update H−1
k other than first obtaining Hk and then solving H−1

k ∇f(xk). Based on
(14.3), one can use the matrix inversion lemma to show

H−1
k+1 =

(
I − sky

T
k

yTk sk

)
H−1

k

(
I − yks

T
k

yTk sk

)
+
sks

T
k

yTk sk
(14.4)

You will be asked to show the above formula in Homework 3. Therefore, for the BFGS
method, the computation cost is mainly required for updating (14.4). At each iteration,

14-2

ECE 490 Lecture 14 — 10/18/2018 Fall 2018

the main computation is doing the matrix multiplication twice and the cost scales with
O(p2) if x ∈ Rp. In contrast, Newton’s method requires computing the Hessian ∇2f(xk)
and then solving the linear equation ∇2f(xk)dk = ∇f(xk). The cost for solving the linear
equation ∇2f(xk)dk = ∇f(xk) scales with O(p3) in general 1. Therefore, the per iteration
computation cost for Newton’s method is the cost for computing Hessian plus some value
scaling with O(p3). This is much higher than the per iteration cost for the BFGS method
which roughly scales with O(p2).

Locally, the BFGS method also achieves superlinear convergence. This is similar to
Newton’s method. One interpretation for the BFGS update (14.4) is that H−1

k+1 is chosen to
be as close to H−1

k as possible for some appropriate metric quantifying the distance between
two matrices. We skip the details of these interpretations.

It is worth mentioning that the BFGS method requires storing H−1
k in memory. When p

is large, this could be an issue. Therefore, the limited-memory BFGS (L-BFGS) method is
developed. We will not talk about L-BFGS in details in this course.

Compared with the gradient method, Newton’s method typically requires much less it-
erations but the per iteration cost is significantly higher. The BFGS method can be viewed
as an interpolation of the gradient method and Newton’s method. There is another method
called the conjugate gradient method which can also be viewed as some interpolation of the
gradient method and Newton’s method. Due to the time constraint, we will not cover this
method in the class.

14.3 Subgradient Method

We have only talked about the optimization of differential functions. Now let’s look at the
case where the objective function is not differentiable. Recall for a convex differentiable f ,
we have

f(y) ≥ f(x) +∇f(x)T(y − x) ∀y ∈ Rp

If f is convex and not differentiable at x, we can still find vector g such that f(y) ≥
f(x)+gT(y−x) ∀y ∈ Rp. This vector g is called the subgradient. Consider a one-dimensional
example f(x) = |x|. This function is not differentiable at x = 0. But there are many
subgradients at x = 0. Actually any −1 ≤ g ≤ 1 is a subgradient in this case. As long as f
is convex, it has some subgradient at every point. If f is differentiable, then at each point it
has a unique subgradient which is its gradient. The set of all subgradients at x is called the
subdifferential at x, and is denote as ∂f(x). For a convex (possibly non-differentiable) f , if
0 ∈ ∂f(x∗), then x∗ is a global min (Verify this by yourself!). Therefore, we are interested
in finding points whose subdifferential includes 0.

A straightforward way to generalize the gradient method for convex non-differentiable f
is to replace the gradient with the subgradient. This leads to the subgradient method which

1When there is some sparsity in the Hessian matrix, one can solve this equation much faster. But in
general, O(p3) is the required cost.

14-3

ECE 490 Lecture 14 — 10/18/2018 Fall 2018

iterates as

xk+1 = xk − αgk

where gk ∈ ∂f(xk). If we assume ‖gk‖ ≤ G, then we will be able to use the dissipation
inequality approach to show some convergence properties of the subgradient method. Just
realize that ‖gk‖ ≤ G and f(xk) − f(x∗) ≤ gTk (xk − x∗) can both be written as quadratic
supply rate conditions. I will let you think about how to use these two supply rate conditions
for now. We will talk a little bit more about this in the next lecture.

14-4

