
ECE 490: Introduction to Optimization Fall 2018

Lecture 16
Nonsmooth Convex Optimization, Part II

Lecturer: Bin Hu, Date:10/25/2018

In this lecture, we will talk about three things: i) the update formula for the proximal
operator calculation in ISTA; ii) the convergence rate analysis of the proximal gradient
method using the dissipation inequality approach; iii) the projected gradient method which
can be viewed as a special case of the proximal gradient method.

16.1 Shrinkage Operator for ISTA

In the last lecture, we have talked about ISTA. The proximal update xk+1 = proxg,α(xk −
α∇f(xk)) simply requires solving the following one-dimensional subproblem

xjk+1 = arg min
xj∈R

{
1

2α
(xj − hjk)

2 + µ|xj|
}

(16.1)

where hjk is just a scalar. This subproblem yields a simple solution. For simplicity, let’s
consider the minimization of q(x) = 1

2α
(x − h)2 + µ|x| where both x and h are scalars. We

have

q(x) =

{
1
2α

(x2 − 2hx+ 2µαx+ h2) if x ≥ 0
1
2α

(x2 − 2hx− 2µαx+ h2) if x < 0
(16.2)

If h ≥ µα, then q(x) achieves its minimum at h − µα ≥ 0. If h ≤ −µα, then q(x) achieves
its minimum at h + µα ≤ 0. If −µα < h < µα, then q(x) achieves its minimum at 0. A
graphical illustration is shown in Figure 16.1.

Figure 16.1. In the left plot, h ≥ µα and q(x) achieves its minimum at h − µα ≥ 0. In the right plot,
h ≤ −µα, then q(x) achieves its minimum at h + µα ≤ 0. The plot in the middle demonstrates the case
where −µα < h < µα and the minimum value is achieved at 0.
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Consequently, (16.1) can be efficiently updated using the following so-called shrinkage
operator:

xjk+1 =


hjk − µα if hjk ≥ µα

0 if − µα < hjk < µα

hjk + µα if hjk ≤ −µα
(16.3)

The shrinkage operator just helps to sparsify the solution. Eventually a lot of hjk will end up
as a value in the interval [−µα, µα] and the solution for x will become sparse. The larger µ
is, the bigger the interval [−µα, µα] is and the more sparse the solution becomes.

ISTA provides an efficient method for `1-regularized problems. However, for more general
problems, the proximal gradient method may not be that useful. In many situations, g can
be complicated and it is difficult to calculate the proximal operator proxg,α. The proximal

gradient method is only efficient when the subproblem arg minxj∈R
{

1
2α
‖x− h‖2 + g(x)

}
can

be easily solved.

16.2 Convergence Rate Analysis of Proximal Gradient

Now we modify our dissipation inequality approach to analyze the convergence rate of the
proximal gradient method. Recall that the proximal gradient method iterates as

xk+1 = arg min
x∈Rp

{
1

2α
‖x− xk + α∇f(xk)‖2 + g(x)

}
Therefore, we can rewrite the proximal gradient method as

xk+1 = xk − αuk − αrk (16.4)

where uk = ∇f(xk) and rk ∈ ∂g(xk+1). We emphasize that rk is a subgradient of g evaluated
at xk+1 (not xk)! We can still apply the dissipation inequality approach to analyze this
method. Specifically, we can just follow the three-step analysis routine presented in the
previous lectures.

1. Replace uk = ∇f(xk) and rk ∈ ∂g(xk+1) with some quadratic inequalities in the
following form:  xk − x∗

∇f(xk)−∇f(x∗)
rk − r∗

T

Xj

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

 ≤ 0 (16.5)

where r∗ is a subgradient of g evaluated at x∗ and satisfying r∗ = −∇f(x∗). Recall
that when we analyze the gradient method with L-smooth m-strongly convex f , we
just replace uk = ∇f(xk) with the quadratic inequality:[

xk − x∗
∇f(xk)−∇f(x∗)

] [
2mLI −(L+m)I

−(L+m)I 2I

] [
xk − x∗

∇f(xk)−∇f(x∗)

]
≤ 0
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which can be trivially lifted as xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

T  2mLI −(L+m)I 0
−(L+m)I 2I 0

0 0 0

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

 ≤ 0

Therefore, we can just choose X1 =

 2mLI −(L+m)I 0
−(L+m)I 2I 0

0 0 0

.

So far we have only applied the dissipation inequality to analyze iterations with the
gradient evaluated at Cξk. Here rk involves a subgradient evaluated at xk+1. However,
xk+1 is just a linear combinatin of xk, ∇f(xk), and rk. We should be able to replace
the relationship rk ∈ ∂g(xk+1) with some quadratic inequality in the form of (16.5). If
we know g is convex, we directly have (rk− r∗)T(xk+1−x∗) ≥ 0. This can be rewritten
as a quadratic inequality:[

xk+1 − x∗
rk − r∗

] [
0 −I
−I 0

] [
xk+1 − x∗
rk − r∗

]
≤ 0

Based on x∗k+1 − x∗ = xk − x∗ − α(∇f(xk)−∇f(x∗))− α(rk − r∗), we can rewrite the
above quadratic inequality as xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

T  I 0
−αI 0
−αI I

[ 0 −I
−I 0

] [
I −αI −αI
0 0 I

] xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

 ≤ 0

Therefore, we can just choose X2 as

X2 =

 I 0
−αI 0
−αI I

[ 0 −I
−I 0

] [
I −αI −αI
0 0 I

]
=

 0 0 −I
0 0 αI
−I αI 2αI


and (16.5) is satisfied.

2. With our choices of X1 and X2, we can apply the dissipation inequality approach. If
there exists λ1 and λ2 such that1− ρ2 −α −α

−α α2 α2

−α α2 α2

 ≤ λ1

 2mL −(L+m) 0
−(m+ L) 2 0

0 0 0

+ λ2

 0 0 −1
0 0 α
−1 α 2α

 (16.6)
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then we have a dissipation inequality ‖xk+1 − x∗‖2−ρ2‖xk − x∗‖2 ≤ S where S is given
by

S =λ1

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

T

X1

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗


+λ2

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

T

X2

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗


The key equation we use to formulate (16.6) is

‖xk+1 − x∗‖2 =

 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗

T 1 −α −α
−α α2 α2

−α α2 α2

⊗ I
 xk − x∗
∇f(xk)−∇f(x∗)

rk − r∗


3. Once we have the dissipation inequality ‖xk+1 − x∗‖2 − ρ2‖xk − x∗‖2 ≤ S , we can

immediately show the linear convergence ‖xk+1 − x∗‖2 ≤ ρ2‖xk − x∗‖2 using (16.5)
and the non-negativity of (λ1, λ2).

Therefore, we only need to find λ1 and λ2 such that (16.6) holds. If we choose λ2 = α,
(16.6) becomes 1− ρ2 −α 0

−α α2 0
0 0 −α2

 ≤ λ1

 2mL −(L+m) 0
−(m+ L) 2 0

0 0 0


To ensure the above inequality holds, we only need[

1− ρ2 −α
−α α2

]
≤ λ1

[
2mL −(L+m)

−(m+ L) 2

]
which is exactly the testing condition for the gradient method. So we can obtain the same
convergence rate bounds for the proximal gradient method by solving the above testing
condition.

We see that the dissipation inequality approach is general enough to handle the proximal
operator. Consider FISTA that iterates as

xk+1 = proxg,α(yk − α∇f(yk))

yk = (1 + β)xk − βxk−1

The above iteration can be rewritten as

xk+1 = yk − α∇f(yk)− αrk
yk = (1 + β)xk − βxk−1
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where rk ∈ ∂g(xk+1). Similarly we can replace rk ∈ ∂g(xk+1) with some quadratic supply
rate condition and then perform the rate analysis. It is worth mentioning that proving
convergence in V (ξk) + f(xk) + g(xk)− f(x∗)− f(x∗) requires some extra technical details.
We omit these details here.

16.3 Projected Gradient Method

Proximal gradient method can also be used to solve some relatively simple constrained
optimization problem.

Consider the constrained optimization

min
x∈X

f(x)

where the feasible set X is a convex set. We can reformulate the above problem as an un-
constrained optimization problem minx∈Rp{f(x) + g(x)} where g(x) is an indicator function:

g(x) =

{
0 if x ∈ X

+∞ if x /∈ X (16.7)

Clearly, for x ∈ X, we have f(x) + g(x) = f(x). It is straightforward to verify the two
formulations are equivalent (verify this yourself!). Now we can apply the proximal gradient
method xk+1 = proxg,α(xk−α∇f(xk)) to solve the original constrained optimization problem.
The proximal update is

xk+1 = arg min
x∈Rp

{
1

2α
‖x− hk‖2 + g(x)

}
where hk = xk − α∇f(xk). By definition, one can show the above update is equivalent to

xk+1 = arg min
x∈X

‖x− hk‖2 (16.8)

The above operation is called projection. Therefore, in this case, the proximal gradient
method just becomes the projected gradient method. Sometimes when X is simple and nice,
the projection can be easily computed and the projected gradient method is very efficient.
For example, consider X = {x : xi ≥ 0,∀1 ≤ i ≤ p}. Then (16.8) can be updated using the
simple analytical formula

xik+1 =

{
hik if hik ≥ 0
0 if hik < 0

(16.9)

Similarly, other box constraints can also be easily handled by the projected gradient method.
When X is more complicated, the projected gradient method may not be that useful.
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