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Now we shift our focus to constrained optimization. In this lecture, we give an overview
of constrained optimization. We will clarify what type of constrained optimization problems
will be studied in the rest of the semester.

17.1 General Formulation of Constrained Optimization

Recall that in general an optimization problem has the following form:

min
x∈X

f(x)

where x is the decision variable, f is the objective function, and X is some feasible set.
In most situations, the feasible set X can be decoded by some equality and inequality
constraints. This leads to the following general formulation for constrained optimization:

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , l

(17.1)

We have inequality constraints in the form of gi(x) ≤ 0 and equality constraints in the form
of hj(x) = 0. The optimal value of the above problem is defined as f ∗ = inf{f(x)|gi(x) ≤
0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l}. If there does not exist any x satisfying gi(x) ≤ 0
and hj(x) = 0 for all (i, j), we have f ∗ = ∞. In this case, we say the problem (17.1) is
infeasible. If the problem (17.1) is unbounded below, we have f ∗ = −∞. For example,
consider the following problem

minimize x+ y

subject to x2 + y2 ≤ 1
x + y = 100

We cannot find any real number pair (x, y) to satisfy x2 + y2 ≤ 1 and x+ y = 100 simulta-
neously. For this case we have f ∗ =∞.

Let’s look at another example. We consider the following simple problem

minimize x

subject to x ≤ 1
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In this case, the problem is unbounded below. Hence we have f ∗ = −∞.
Clearly, the forms of gi and hj will affect whether we can efficiently solve (17.1) or not.

Depending on the properties of gi and hj, the problem (17.1) can become very challenging.
In this lecture, we will briefly discuss what types of gi and hj will be covered in this course.

17.2 Feasibility Problem

The so-called feasibility problem can be viewed as a special case of the general constrained
optimization problem. Specifically, the feasibility problem has the following form:

find x

subject to gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , l

(17.2)

It asks whether we can find a point x such that the constraints gi(x) ≤ 0 and hj(x) = 0 are
satisfied for all (i, j). This can be considered as a special case of (17.1) where f is set to be
any constant function. For example, (17.2) can be reformulated as

minimize 0

subject to gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , l

(17.3)

By the above formulation, we have f ∗ = 0 if the original problem (17.2) is feasible, and
f ∗ =∞ if (17.2) is infeasible.

17.3 Overview of Optimization with Equality Constraints

General nonlinear equality constraints can be very difficult to handle. For general hj, the
feasibility problem can already be extreme difficult since it involves solving nonlinear equa-
tions. In this course, we mostly focus on linear equality constraints in the form of Ax = b
where A is some matrix and b is some vector. Notice linear constraints and affine constrains
are typically exchangeable in the optimization literature. To be clear, we will talk about the
following problem

minimize f(x)

subject to Ax − b = 0
(17.4)

The above problem can be more or less viewed as an unconstrained optimization problem
since we can use the linear equation Ax = b to eliminate some variables in f(x) and then the
resultant problem becomes an unconstrained optimization. However, sometimes we still want
to treat (17.4) as a constrained optimization problem. Here is one example that we prefer to
reformulate unconstrained optimization problems as constrained optimization problems in
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the form of (17.4). Consider a composite optimization problem: min f(x) + g(Tx) where f
is differentiable, g is the `1-norm, and T is some structure matrix. This problem arises from
many applications, e.g. sensor/actuator allocation in control. The matrix T captures some
important topology structure in such applications. If T = I, the problem can be handled by
the proximal gradient method. For general T , one way to handle the composition structure
is to set z = Tx and reformulate the problem as

minimize f(x) + g(z)

subject to Tx − z = 0

which can be solved using primal-dual type of methods.
There are a large family of primal-dual methods that are designed to solve constrained

optimization problems in the form of (17.4). We will talk about these algorithms in future
lectures.

For more complicated hj, one heuristic is to linearize hj at each xk for all k and iteratively
solve a linear constrained optimization problem. We will briefly discuss this in the future
lectures.

17.4 Overview of General Constrained Optimization

For a general problem with both equality and inequality constraints, we will first talk about
the optimality conditions (the famous Karush-Kuhn-Tucker (KKT) conditions). We will also
briefly talk about some general techniques (e.g. sequential quadratic programming) that one
can try for general problems.

We will cover convex programming in more details. In this case, we have linear equality
constraints and gi is convex for all i. Notice any equality constraint hj(x) = 0 can be
equivalently rewritten as two inequality constraints hj(x) ≤ 0 and hj(x) ≥ 0. Therefore,
in convex programming, we expect hj and −hj are both convex. This naturally leads to
the linear equality constraints. We will talk about penalty methods, barrier functions, and
multiplier methods for such problems.

There are several types of convex programming problems that have been extensively
studied in the literature.

• Linear programming (LP):

minimize cTx

subject to Gx − r ≤ 0
Ax − b = 0

(17.5)

where Gx − r ≤ 0 means all the entries of the vector (Gx − r) are non-positive.
Many problems can be reformulated as LP problems. For example, the piecewise-
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linear minimization problem minimizemaxi=1,...,m(aTi x+ bi) can be reformulated as

minimize t

subject to aTi x + bi ≤ t, i = 1, . . . ,m
(17.6)

which is in the form of (17.5) if we augment x and t as our new decision variable vector
and choose (c,G, r) as

c =
[
0 . . . 0 1

]
, G =


aT1 −1
aT2 −1
... −1
aTm −1

 , r =


−b1
−b2

...
−bm

 .
Many solvers are available for LPs. Both the simplex method and the interior-point
methods have been implemented for practical large scale problems. In Matlab, you
can use the function linprog to solve LPs.

• Second-order cone programming (SOCP):

minimize cTx

subject to ‖Fix + di‖ ≤ fT
i x+ ri, i = 1, . . . ,m

Ax − b = 0

(17.7)

SOCP is more general than LP but also slightly more difficult. One example for SOCP
is the so-called robust LP problem. There are also many solvers for SOCP.

• Semidefinite programming (SDP):

minimize cTx

subject to x1F1 + x2F2 + · · ·+ xpFp + F0 ≤ 0
Ax − b = 0

(17.8)

where x =


x1
x2
...
xp

 is the decision variable vector, Fi are symmetric matrices for all i, and

the matrix inequality holds in the semidefinite sense. Hence we want to find x such that
x1F1 +x2F2 + · · ·+xpFp +F0 is a negative semidefinite matrix. SDP is very powerful. Recall
the following general condition we used to construct dissipation inequality:[

ATPA− ρ2P ATPB
BTPA BTPB

]
−

j∑
j=1

λjXj ≤ 0 (17.9)
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Given (A,B,Xj, ρ
2), we can augment P and λj as our decision variable vector and rewrite

the above condition in the form of (17.8). So basically the dissipation inequality approach
relies on solving feasibility problems of SDPs. Numerical solvers are also available for SDPs.
For example, we can download the cvx package and then write Matlab codes to solve SDPs.
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