ECE 490: Introduction to Optimization Fall 2018

Lecture 18
Optimization with Equality Constraints

Lecturer: Bin Hu, Date:11/1/2018

In this lecture, we will talk about optimization problems with equality constraints:

minimize f(x)
(18.1)
subject to h;(xz) =0, j=1,...,1

We will talk about how to address linear equality constraints Az — b = 0 and explain the
main difficulties for handling general h;.

18.1 Optimality Conditions and Lagrange Multipliers

For unconstrained optimization, we know that any local min x* of a differentiable f has to
satisfy V f(z*) = 0. Then the optimization problem can be viewed as an equation solving
task. For constrained optimization, we also have optimality conditions. We assume that h;
is differentiable for all j. A point z is said to be a regular point for (18.1) if Vhy(x), Vhe(x),
ooy Vhy_1(z), and Vhy(x) are linearly independent. Now we are ready to state the main
optimality condition for (18.1).

Theorem 18.1. Suppose z* is a local min and a regular point for (18.1). Then there exist
unique scalars A\j, A5, ..., \] such that

V() + ) NVh(a*) =0. (18.2)

Here the scalars A}, A3, ..., A\ are called Lagrange multipliers. The above condition
is part of the Lagrange multiplier theorem. The regularity condition on z* is important.
Otherwise there may not exist any A}, A5, ..., A\J such that (18.2) is satisfied. Here is an
example.

Example: Consider the following minimization problem

minimize x7 + x2

subject to (z; —1)? + 23 = 1
+a3=14

(21 —2)°
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This problem has only one feasible point (z1,22) = (0,0). Therefore, the objective
function is minimized at this feasible point, and we have (z7, x3) = (0,0). We have

vsa) = 1] I = [, vt =[]

Clearly there does not exist A} and A} such that V f(z*) + AiVhy(2*) + A3V ha(z*) = 0. The
issue here is that Vhy(z*) and Vhe(z*) are linearly dependent in this case.

So (18.2) only provides a necessary condition for regular local minimum points. Finding a
local min that is not regular is a difficult task since we may not have a well-defined optimality
condition for these points in the first place.

Exceptions: Suppose we only have a linear equality constraint Az—b = 0. If A is full rank,
then any feasible point is actually regular. However, an amazing fact is that the regularity
assumption on z* can be dropped and we can still find Lagrangian multipliers when A is not
full rank. In this case, we do not have uniqueness of the Lagrangian multipliers. There may
exist many choices of A, A5, ..., A4, and A; such that (18.2) holds if A is not full rank.
Just think that you can discard the redundant equality constraints and assign the associated
Lagrangian multipliers to be 0.

18.2 Lagrangian Function

Now we define the Lagrangian function as L(z, \) = f(x) + ATh(z) where X and h are given
as

)\1 hl(l‘)
= 2 h =
);l hl(ﬂf)

Then any regular local min x* and associated unique Lagrange multiplier \* will form a
stationary point for the Lagrangian function L(x, \). Specifically, we have

V.L(z",\) =0 (18.3)
VaL(z*, \) = 0 (18.4)

Notice (18.3) is equivalent to (18.2), and (18.4) just restates the fact h(z*) = 0.
Therefore, we can find all the regular local minimum points of (18.1) if we know all the
stationary points of L(zx, ).
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18.3 Duality

The duality theory is built upon the following inequality:

D)) = in L(z,\) < mi L(z,\) = ' 18.5
max D)) = max min [(2,A) < minmax L(z,}) = min f(z) (18.5)
where D(A) := mingege L(z, \) is the so-called dual function. Now we explain the above

statement:

1. maxyept D(N\) = maxyep: mingere L(x, A): This follows from the definition of the dual
function.

2. maxycp Mingege L(z, A) < mingere maxycp: L(x, A): This follows from the fact that we
have L(z, \) < maxycr: L(x, \) for any z and A\. Consequently, we have mingege L(x, \) <
mingege maxycre L(x, A) which directly leads to the desired inequality.

3. mingerr Maxycrr L(z, A) = ming.p)=o f(x): This is a direct consequence of the follow-
ing relation:

f(z) if h(x) =0

+00 Otherwise (18.6)

max L(z, \) = {
AER!

Notice if we do not have h(x) = 0, then we can always choose some arbitrarily large A
to make f(z) + ATh(z) go to infinity.

Concavity of dual function. A remarkable property of the dual function is that it is
always concave no matter what f we have. Please verify this fact by yourself. The only
inequality you need to prove the concavity of D is min,cge{a(z) 4+ b(x)} > mingcre a(x) +
mingere b(z). Since the dual function is concave, we can always apply the gradient ascent
method to maximize the dual function when it is differentiable. Based on (18.5), we can
obtain a lower bound for (18.1) by maximizing the dual function. Sometimes the lower
bound obtained in this way may be too conservative and is not that useful.

Strong duality. If the inequality in (18.5) holds as an equality, i.e. maxcp mingege L(z, \) =
mingege maxycrt L(z, A), then we have the so-called strong duality. Strong duality means
that the global max of the dual function is equal to the global min of the primal problem
(18.1). Strong duality is firmly related to the saddle point of the Lagrangian function L(z, A).

Saddle point of Lagrangian We call (z*, \*) a saddle point of L(z, \) if the following
condition holds

L(z*,\) < L(z*, \*) < L(z, \*). (18.7)

When we have strong duality, we know (z*, A*) is a saddle point of L(x, A) where z* is a
global min of the primal problem (18.1) and A* is a global max of the dual function D(\).
Consequently, a large family of saddle point algorithms can be used to solve (18.1) when we
have strong duality.
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When do we have strong duality? In general, the proof of strong duality is difficult and
case-dependent. When we only have linear equality constraints for (18.1) and the objective
function f is convex, the strong duality is automatically guaranteed. This means that we
can apply various saddle point methods to solve (18.1) with convex f and affine h.

18.4 Algorithms for Linear Equality Constraints

When f is convex and the only constraint is Ax = b, we have strong duality and all we need
to do is to find the saddle point of L(z,A). When f is strongly-convex and A is full row
rank, one can further prove that the saddle point of L exists and is unique. Now we can
apply an iterative algorithm that performs gradient descent on x and gradient ascent on A
after initializing from some point. This leads to the following algorithm:

Thy1 = T — anL(a:k, )\k)
)‘/H—l = /\k + 77(A1'k — b)

where 7, € RP and )\, € R are vectors at step k. This is called the discrete-time primal dual
gradient algorithm. When f is smooth and strongly convex, the method converges linearly.

Instead of performing gradient descent on x, we can also minimize the Lagrangian func-
tion over x. This leads to the so-called dual ascent algorithm:

Ty = argmin L(x, \g)
TERP

Me1 = M+ n(Azgyg — )

Sometimes, there are other structures in the problem and more efficient algorithms are
available. In next lecture, we will talk about the augmented Lagrangian method and the
alternating direction of multiplier method (ADMM).
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