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In this lecture, we focus on optimization with linear equality constraints. We will talk
about the augmented Lagrangian function, the method of multipliers, and the alternating
direction method of multipliers (ADMM).

19.1 Augmented Lagrangian Function

In the last lecture, we have talked about the dual ascent method and the primal-dual gradient
dynamics. These methods apply gradient ascent to the dual variable. The shape of the dual
function determines how well the gradient ascent on the dual variable works. Suppose the
objective function is f(x) and the constraint is Ax = b. Recall that the dual function is
defined as

D(λ) = min
x
{f(x) + λT(Ax− b)}

In many situations, D(λ) is not even differentiable. Just imagine f is a linear function and
the dual function can just become −∞. To overcome this issue, the augmented Lagrangian
function is introduced. The idea of the augmented Lagrangian is based on reformulating the
original constrained minimization problem. Suppose the original problem is

minimize f(x)

subject to h(x) = 0
(19.1)

The above problem is actually equivalent to

minimize f(x) + ρ
2
‖h(x)‖2

subject to h(x) = 0
(19.2)

where ρ > 0 is a hyperparameter. The two problems are completely equivalent due to the
fact that eventually the optimal point has to satisfy the equality constraint h(x) = 0. Verify
this by yourself! Now we can write out the Lagrangian for (19.2) as

Lρ(x, λ) = f(x) + λTh(x) +
ρ

2
‖h(x)‖2 (19.3)

which is exactly the augmented Lagrangian for the original problem (19.1). Now the dif-
ferentiability of the function minx Lρ(x, λ) is improved, and this helps the gradient ascent
step on the dual variable. The definition of augmented Lagrangian is general and covers the
case where h is nonlinear. Next, we focus on linear equality constraints and introduce algo-
rithms that are developed based on the augmented Lagrangian. From now on, we assume
h(x) = Ax− b.
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19.2 Method of Multipliers

The method of multipliers can be viewed as an extension of the dual ascent method. The
difference is that the method of multipliers uses the augmented Lagrangian. Consider the
constrained minimization problem with an equality constraint Ax = b. Notice ∇λLρ(x, λ) =
Ax− b. Therefore, the method of multipliers iterates as

xk+1 = arg min
x

Lρ(x, λk) (19.4)

λk+1 = λk + ρ(Axk+1 − b) (19.5)

Notice the stepsize for the dual variable update is exactly ρ. This stepsize is used to ensure
∇f(xk+1) + ATλk+1 = 0. Recall that we need ∇xL(x, λ) = 0 and ∇λL(x, λ) = 0. So the
stepsize ρ just ensures ∇xL(xk+1, λk+1) = 0 for all k > 1.

The method of multipliers has much better convergence properties compared with the
dual ascent method. However, it also has some disadvantages as we will discuss in the next
section.

19.3 Decomposition Issues for Method of Multipliers

For separable f , it is beneficial if we can parallelize the computation. Assume x =


x1

x2

...
xp


where xi is a scalar. If f is separable, i.e. f(x) = f1(x

1)+ . . .+fp(x
p), the Lagrangian is also

separable. We rewrite A as
[
A1 . . . Ap

]
. When applying the dual ascent method, we have

xk+1 = arg min
x

L(x, λk) = arg min
x

p∑
i=1

{
fi(x

i) + λTk (Aix
i − b)

}
So the update for xk+1 can be parallelized as

xik+1 = arg min
xi
{fi(xi) + λTkAix

i}

The dual variable update provides the required coordination:

λk+1 = λk + ρ

(
p∑
i=1

Aix
i
k+1 − b

)

So after the parallel computing of xik+1, one computer will gather all the information for
xik+1 and then compute λk+1.

The key in the parallel implementation of the dual ascent method is that λTAx is a
separable function of x. However, if we apply the method of multipliers, the term ‖Ax− b‖2
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is not separable in general and destroys the splitting of the primal variable update. The
method of multipliers can not be parallelized for general A due to this decomposition issue.
When A is an identity matrix, the term ‖Ax− b‖2 becomes ‖x− b‖2 and is still separable.
The method of multipliers can still be parallelized in this case. What if A =

[
D I

]
? In

these cases, we can at least partially fix the decomposition issue using ADMM. Therefore,
ADMM can be viewed as the “decomposable method of multipliers.”

19.4 ADMM

ADMM addresses the following problem

minimize f(x) + g(y)

subject to Ax+By = c
(19.6)

Again, we formulate the augmented Lagrangian:

Lρ(x, y, λ) = f(x) + g(y) + λT(Ax+By − c) +
ρ

2
‖Ax+By − c‖2

ADMM alternates the minimization over x and y. Specifically, ADMM iterates as

xk+1 = arg min
x

Lρ(x, yk, λk) (19.7)

yk+1 = arg min
y

Lρ(xk+1, y, λk) (19.8)

λk+1 = λk + ρ(Axk+1 +Byk+1 − c) (19.9)

If we apply the method of multipliers to (19.6), the following iteration is adopted:[
xk+1

yk+1

]
= arg min

x,y
Lρ(x, y, λk)

λk+1 = λk + ρ(Axk+1 +Byk+1 − c)

Compared with the method of multipliers, the main advantage of ADMM is that some-
times the computation of arg minx Lρ(x, yk, λk) and arg miny Lρ(xk+1, y, λk) can still be par-
allelized even when the computation of arg minx,y Lρ(x, y, λk) cannot be parallelized.

Ex1: LASSO. Consider the LASSO problem minx
1
2
‖Ax− b‖2+µ‖x‖1. This problem can

be equivalently rewritten as

minimize 1
2
‖Ax− b‖2 + µ‖y‖1

subject to x− y = 0
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For the above problem, the augmented Lagrangian is given as

Lρ(x, y, λ) =
1

2
‖Ax− b‖2 + µ‖y‖1 + λT(x− y) +

ρ

2
‖x− y‖2

It is not straightforward to obtain arg minx,y Lρ(x, y, λk) for the above augmented Lagrangian.
Hence it is not a good idea to directly apply the method of multipliers. However, the com-
putation of arg minx Lρ(x, yk, λk) and arg miny Lρ(xk+1, y, λk) are quite straightforward, and
hence we should be able to apply ADMM for the above problem. We have

xk+1 = arg min
x

{
1

2
‖Ax− b‖2 + λTkx+

ρ

2
‖x− yk‖2

}
By the optimality condition of strongly-convex functions, we have AT(Axk+1 − b) + λk +
ρ(xk+1− yk) = 0 and hence xk+1 = (ATA+ ρI)−1(ATb−λk + ρyk). Notice (ATA+ ρI)−1 can
be efficiently computed in the Fourier domain for a lot of imaging applications. This makes
ADMM an attractive approach for these applications. Similarly, we have

yk+1 = arg min
y

{
µ‖y‖1 − λTk y +

ρ

2
‖xk+1 − y‖2

}
This step is similar to the proximal operator update in ISTA, and can be efficiently par-
allelized using the shrinkage operator. Specifically, one can get yk+1 = Sµ/ρ(xk+1 + λk/ρ)
where Sµ/ρ is the shrinkage operator that shrinks any value between −µ/ρ and µ/ρ to 0.
Similar to the proximal step in ISTA, the shrinkage operation can be easily parallelized for
ADMM. The update for λk+1 is still trivially λk+1 = λk + ρ(xk+1 − yk+1). Putting all the
pieces together, the ADMM iteration for the LASSO problem is as follows

xk+1 = (ATA+ ρI)−1(ATb− λk + ρyk)

yk+1 = Sµ/ρ(xk+1 + λk/ρ)

λk+1 = λk + ρ(xk+1 − yk+1)

For many imaging applications, the computation for xk+1 and yk+1 can be efficiently paral-
lelized. This makes ADMM even more efficient than FISTA for these applications.

Ex2: Consensus optimization. Consider the empirical risk minimization
∑n

i=1 fi(x).
This problem can be equivalently rewritten as

minimize 1
2

∑n
i=1 fi(x

i)

subject to xi − y = 0

where xi is a vector having the same dimension as x. It is straightforward to write the
augmented Lagrangian in a sum form:

Lρ =
n∑
i=1

(
fi(x

i) + (λi)T(xi − y) +
ρ

2
‖xi − y‖2

)
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where λi has the same dimension as xi. This formulation leads to a natural parallelization
of the update for xik+1. Eventually the ADMM update rule for this problem is

xik+1 = arg min
xi

{
fi(x

i) + (λik)
T(xi − yk) +

ρ

2
‖xi − yk‖2

}
yk+1 =

1

n

n∑
i=1

(
xik+1 +

λik
ρ

)
λik+1 = λik + ρ(xik+1 − yk+1)
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