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Lecture 2
Unconstrained Optimization for Smooth Strongly-Convex Functions, Part II
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This lecture focuses on the performance of the gradient method for the unconstrained
minimization problem

min
x∈Rp

f(x) (2.1)

where f : Rp → R is a differentiable function being L-smooth and m-strongly convex. We
know there exists a unique global min x∗ such that f(x∗) ≤ f(x) for all x ∈ Rp. The gradient
method iterates as follows

xk+1 = xk − α∇f(xk) (2.2)

In the last lecture, it was mentioned that the gradient method satisfies ‖xk − x∗‖ ≤
ρk‖x0 − x∗‖ for some 0 < ρ < 1 if a reasonable stepsize α is used. The smaller ρ is,
the faster the gradient method converges to the optimal point x∗. However, ρ cannot be
arbitrarily small (which means the gradient method cannot converge as fast as we want). In
this lecture, we will study how ρ depends on m, L, and α.

The main theorem describing how ρ depends on m, L, and α is stated as follows.

Theorem 2.1. Suppose f is L-smooth and m-strongly convex. Let x∗ be the unique global
min. Given a stepsize α, if there exists 0 < ρ < 1 and λ ≥ 0 such that[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
(2.3)

is a negative semidefinite matrix, then the gradient method satisfies ‖xk − x∗‖ ≤ ρk‖x0 − x∗‖.

The above theorem presents a sufficient testing condition for the linear convergence of the
gradient method. We will use the theorem to analyze the convergence rate of the gradient
method. First, we prove the theorem using a general trick called dissipation inequality (we
will explain this terminology in Lecture 4).

2.1 A Useful Lemma

Denote the p× p identity matrix as I. The following lemma is very helpful and will be used
to prove Theorem 2.1.
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Lemma 2.2. Suppose the sequences {ξk ∈ Rp : k = 0, 1, . . .} and {uk ∈ Rp : k = 0, 1, 2, . . .}
satisfy ξk+1 = ξk − αuk. In addition, assume the following inequality holds for all k[

ξk
uk

]T
M

[
ξk
uk

]
≥ 0. (2.4)

If there exist 0 < ρ < 1 and λ ≥ 0 such that[
(1− ρ2)I −αI
−αI α2I

]
+ λM (2.5)

is a negative semidefinite matrix, then the sequence {ξk : k = 0, 1, . . .} satisfies ‖ξk‖ ≤ ρk‖ξ0‖.

Proof: The key relation is

‖ξk+1‖2 = ‖ξk − αuk‖2 = ‖ξk‖2 − 2α(ξk)Tuk + α2‖uk‖2 =

[
ξk
uk

]T [
I −αI
−αI α2I

] [
ξk
uk

]
(2.6)

Since (2.5) is negative semidefinite, we have[
ξk
uk

]T([
(1− ρ2)I −αI
−αI α2I

]
+ λM

)[
ξk
uk

]
≤ 0 (2.7)

We just expand the above inequality as[
ξk
uk

]T [
I −αI
−αI α2I

] [
ξk
uk

]
+

[
ξk
uk

]T [−ρ2I 0p

0p 0p

] [
ξk
uk

]
+ λ

[
ξk
uk

]T
M

[
ξk
uk

]
≤ 0 (2.8)

Applying the key relation (2.6), the above inequality can be rewritten as

‖ξk+1‖2 − ρ2‖ξk‖2 + λ

[
ξk
uk

]T
M

[
ξk
uk

]
≤ 0 (2.9)

Due to the condition (2.4) and the non-negativity of λ, we have

‖ξk+1‖2 − ρ2‖ξk‖2 ≤ −λ
[
ξk
uk

]T
M

[
ξk
uk

]
≤ 0

Hence ‖ξk+1‖ ≤ ρ‖ξk‖ for all k. Therefore, we have ‖ξk‖ ≤ ρ‖ξk−1‖ ≤ ρ2‖ρk−2‖ ≤ . . . ≤
ρk‖ξ0‖.

It is emphasized that the condition (2.4) does not state that M is a positive semidefinite
matrix. The inequality (2.4) is only assumed to hold for the two given sequences {ξk ∈ Rp :
k = 0, 1, . . .} and {uk ∈ Rp : k = 0, 1, 2, . . .}. In addition, the relation ξk+1 = ξk − αuk is
equivalent to

ξk+1 =
[
I −αI

] [ξk
uk

]
which states that ξk+1 is a linear function of (ξk, uk). This is the reason why ‖ξk+1‖2 is just
a quadratic form of (ξk, uk) as shown in (2.6).
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2.2 Proof of Theorem 2.1

When f is L-smooth and m-strongly convex (definitions are provided in the note for Lecture
1), one can prove the following inequality holds for x, y ∈ Rp

(∇f(x)−∇f(y))T(x− y) ≥ mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2 (2.10)

This is the so-called co-coercivity property. You will be asked to prove this inequality in
homework. This inequality can be rewritten as[

x− y
∇f(x)−∇f(y)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− y

∇f(x)−∇f(y)

]
≥ 0. (2.11)

Setting y = x∗ and noticing ∇f(x∗) = 0, the above inequality leads to[
x− x∗
∇f(x)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− x∗
∇f(x)

]
≥ 0. (2.12)

The gradient method xk+1 = xk − α∇f(xk) can be rewritten as xk+1 − x∗ = xk − x∗ −
α∇f(xk). We set ξk = xk − x∗, and uk = ∇f(xk). Then the gradient method is exactly
ξk+1 = ξk − αuk where (ξk, uk) satisfies[

ξk
uk

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
ξk
uk

]
≥ 0. (2.13)

The above inequality is just a restatement of (2.12). Therefore, we can choose M =[
−2mLI (m+ L)I

(m+ L)I −2I

]
and apply Lemma 2.2 to directly prove Theorem 2.1. The final

fact required for the proof is that

[
a b
b c

]
is negative semidefinite if and only if

[
aI bI
bI cI

]
is

negative semidefinite (verify this!).

2.3 Convergence Rates of Gradient Method

Now we apply Theorem 2.1 to obtain the convergence rate ρ for the gradient method with
various stepsize choices.

• Case 1: If we choose α = 1
L

, ρ = 1− m
L

, and λ = 1
L2 , we have[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
−m2

L2
m
L2

m
L2 − 1

L2

]
=

1

L2

[
−m2 m
m −1

]
(2.14)

The right side is clearly negative semidefinite due to the fact that

[
a
b

]T [−m2 m
m −1

] [
a
b

]
=

−(ma− b)2 ≤ 0. Therefore, the gradient method with α = 1
L

converges as

‖xk − x∗‖ ≤
(

1− m

L

)k

‖x0 − x∗‖ (2.15)
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• Case 2: If we choose α = 2
m+L

, ρ = L−m
L+m

, and λ = 2
(m+L)2

, we have[
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
0 0
0 0

]
(2.16)

The zero matrix is clearly negative semidefinite. Therefore, the gradient method with
α = 2

m+L
converges as

‖xk − x∗‖ ≤
(
L−m
L+m

)k

‖x0 − x∗‖ (2.17)

Notice L ≥ m > 0 and hence 1 − m
L
≥ L−m

L+m
. This means the gradient method with

α = 2
m+L

converges slightly faster than the case with α = 1
L

. However, m is typically

unknown in practice. The step choice of α = 1
L

is also more robust (we will discuss this in
later sections). The most popular choice for α is still 1

L
.

We will give interpretations for the above convergence rates in the next lecture.
Finally, in Homework 1, you will be asked to express ρ as a function of α. Hence you

have to choose λ carefully for a given α. Notice

[
a b
b c

]
is negative semidefinite if and only

if c ≤ 0 and ac − b2 ≥ 0. So

[
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
is negative semidefinite if

and only if

(1− ρ2 − 2mLλ)(α2 − 2λ)− (λ(m+ L)− α)2 ≥ 0 (2.18)

α2 − 2λ ≤ 0 (2.19)

which is equivalent to

ρ2 ≥ 1− 2mLλ− (λ(m+ L)− α)2

α2 − 2λ
(2.20)

λ ≥ α2

2
(2.21)

In the homework, you will be guided to use the above formula to express ρ as a function of
α after setting λ to some function of α.

2-4


