
ECE 490: Introduction to Optimization Fall 2018

Lecture 20
Review of Covered Materials, Part II

Lecturer: Bin Hu, Date:11/8/2018

Today we review some materials that are relevant to Midterm 2. Here is a list of relevant
topics.

1. Newton’s method

2. BFGS method

3. Proximal gradient method

4. LASSO, ISTA, and shrinkage operator

5. Lagrangian multipliers

6. Duality

7. Augmented Lagrangian and ADMM

20.1 Newton’s Method and BFGS Method

Newton’s method uses the Hessian information and iterates as

xk+1 = xk − (∇2f(xk))
−1∇f(xk)

When the iterates are closed to a strict local min, the Hessian information is quite helpful.
However, the Hessian computation can be expensive for many applications. This moti-

vates the developments of Quasi-Newton methods which estimate the Hessian ∇2f(xk) with
some simpler matrix Hk. The most popular Quasi-Newton method is the BFGS method
that iterates as xk+1 = xk − αkH−1

k ∇f(xk) and calculates H−1
k in the following way:
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(20.1)

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
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20.2 Proximal Gradient Method and ISTA

When the objective function is convex but not differentiable, the subgradient method can
be used. However, the subgradient method is quite slow. When the objective function is a
sum of a smooth convex function and a non-smooth (but relatively simple) convex function,
the proximal gradient method can be used. When the objective function is (f + g), one can
apply the proximal gradient method xk+1 = proxg,α(xk−α∇f(xk)) if proxg,α can be efficiently
computed. If f is L-smooth and m-strongly convex, and g is convex, the convergence rate of
the proximal gradient method is the same as the rate of the gradient method applied to an
L-smooth m-strongly convex function. This can be proved using the dissipation inequality
approach. See the second section in Lecture 16 for this proof.

If we apply the proximal gradient method to the LASSO problem (or other `1-regularized
problems), the proximal step can be done using the shrinkage operator Sµα. See the first
section in Lecture 16 for more discussion on the shrinkage operator.

20.3 Lagrangian and Duality

We have talked about the necessary condition for optimization with equality constraint in
the first section of Lecture 18. What about sufficient conditions? Now we state one useful
sufficient condition for a local min of an optimization problem with equality constraints.
Suppose the objective function is f and the equality constraint is h(x) = 0. We assume f
and h are twice continuously differentiable. If there exists λ∗ and x∗ such that ∇xL(x∗, λ∗) =
∇f(x∗) + (λ∗)T∇h(x∗) = 0, h(x∗) = 0, and dT∇2

xxL(x∗, λ∗)d > 0 for all d 6= 0 satisfying
dT∇h(x∗) = 0, then x∗ is a strict local min of f subject to the constraint h(x) = 0.

Ex 1. Consider the following problem

minimize −(x1x2 + x2x3 + x1x3)

subject to x1 + x2 + x3 = 3
(20.2)

By setting ∇xL(x∗, λ∗) = 0 and h(x∗) = 0, we have

−x∗2 − x∗3 + λ∗ = 0

−x∗1 − x∗3 + λ∗ = 0

−x∗1 − x∗2 + λ∗ = 0

x∗1 + x∗2 + x∗3 = 3

We have four variables and four linear equations. The equations have a unique solution
x∗1 = x∗2 = x∗3 = 1, and λ∗ = 2. Next we compute the Hessian information ∇2

xxL(x∗, λ∗) and
obtain

∇2
xxL(x∗, λ∗) =

 0 −1 −1
−1 0 −1
−1 −1 0


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Suppose d =

d1d2
d3

. The condition dT∇h(x∗) = 0 just states d1 + d2 + d3 = 0. We have

dT∇2
xxL(x∗, λ∗)d = −2(d1d2 + d2d3 + d1d3)

Since (d1 + d2 + d3)
2 = 0, we have −2(d1d2 + d2d3 + d1d3) = d21 + d32 + d23 > 0 for any d 6= 0.

Therefore, the sufficient condition is satisfied, and we have a strict local min here.
It is worth mentioning that the sufficient condition is met if ∇2

xxL(x∗, λ∗) > 0. However,
in the above example, even though we do not have the positive definiteness of ∇2

xxL(x∗, λ∗),
the proposed sufficient condition still works.

The duality theory is also very important. See Lecture 18 for more discussions. One
important thing is calculating the dual function for a given Lagrangian. Also see HW 5 for
such problems.

20.4 Augmented Lagrangian and ADMM

Augmented Lagrangian is introduced to help the convergence of the gradient ascent on the
dual variable. ADMM can be viewed as the “decomposable method of multipliers”, and
addresses the following problem

minimize f(x) + g(y)

subject to Ax+By = c
(20.3)

We first formulate the augmented Lagrangian:

Lρ(x, y, λ) = f(x) + g(y) + λT(Ax+By − c) +
ρ

2
‖Ax+By − c‖2

ADMM alternates the minimization over x and y. Specifically, ADMM iterates as

xk+1 = arg min
x

Lρ(x, yk, λk)

yk+1 = arg min
y

Lρ(xk+1, y, λk)

λk+1 = λk + ρ(Axk+1 +Byk+1 − c)

Compared with the method of multipliers, the main advantage of ADMM is that some-
times the computation of arg minx Lρ(x, yk, λk) and arg miny Lρ(xk+1, y, λk) can still be par-
allelized even when the computation of arg minx,y Lρ(x, y, λk) cannot be parallelized. It is
important to understand how to write out primal and dual updates of ADMM for a given
problem. See the examples in Lecture 19 and HW 5.
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