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Today we will present the duality theory for the following general constrained optimiza-
tion problem

minimize f(x)

subject to h(x) = 0
g(x) ≤ 0

(22.1)

Notice h and g both are vector functions. Specifically, we have

h(x) =


h1(x)
h2(x)

...
hm(x)

 , g(x) =


g1(x)
g2(x)

...
gl(x)


The duality theory here is very similar to the duality theory for optimization with equality

constraints. Define the Lagrangian

L(x, λ, µ) = f(x) + λTh(x) + µTg(x)

From KKT condition, we only consider µ ≥ 0 (here µ is a vector and what we really
mean is that each entry of µ is non-negative). Then the duality theory is built upon the
following inequality:

max
λ∈Rm,µ≥0

D(λ, µ) = max
λ∈Rm,µ≥0

min
x∈Rp

L(x, λ, µ) ≤ min
x∈Rp

max
λ∈Rm,µ≥0

L(x, λ, µ) = min
x:h(x)=0, g(x)≤0

f(x)

(22.2)

where D(λ, µ) := minx∈Rp L(x, λ, µ) is the so-called dual function. (More precisely, we should
replace min with inf, but for simplicity we abuse the notation and still use min here.) Now
we explain the above statement:

1. maxλ∈Rm,µ≥0D(λ, µ) = maxλ∈Rm,µ≥0 minx∈Rp L(x, λ, µ): This follows from the defini-
tion of the dual function.

2. maxλ∈Rm,µ≥0 minx∈Rp L(x, λ, µ) ≤ minx∈Rp maxλ∈Rm,µ≥0 L(x, λ, µ): This follows from
the fact that we have L(x, λ, µ) ≤ maxλ∈Rm,µ≥0 L(x, λ) given any µ ≥ 0 and arbi-
trary vectors (x, λ). Consequently, we can take min over x on both sides and have
minx∈Rp L(x, λ, µ) ≤ minx∈Rp maxλ∈Rm,µ≥0 L(x, λ, µ). This directly leads to the desired
inequality.
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3. minx∈Rp maxλ∈Rm,µ≥0 L(x, λ, µ) = minx:h(x)=0, g(x)≤0 f(x): This is a direct consequence
of the following relation:

max
λ∈Rm,µ≥0

L(x, λ, µ) =

{
f(x) if h(x) = 0 and g(x) ≤ 0
+∞ Otherwise

(22.3)

Notice if we do not have h(x) = 0, then we can always choose some arbitrarily large λ
to make f(x) + λTh(x) + µTg(x) go to infinity. Similarly, if we do not have g(x) ≤ 0,
we can choose some µ to make f(x) + λTh(x) + µTg(x) go to infinity.

Concavity of dual function. Similar to the case where all the constraints are equality
constraints, the dual function is always concave no matter what f we have. Please verify this
fact by yourself. The only inequality you need to prove the concavity of D is minx∈Rp{a(x)+
b(x)} ≥ minx∈Rp a(x) + minx∈Rp b(x).

Strong duality. If the inequality in (22.2) holds as an equality, then we have the so-called
strong duality. In general, the proofs of strong duality are case-dependent. There exist
examples where strong duality holds for non-convex problems. Those proofs are non-trivial.
When f is convex, gj is convex, and hi is linear, a sufficient condition guaranteeing the
strong duality is that there exists a vector x satisfying gj(x) < 0 for all j and hi(x) = 0 for
all i. This is the famous Slater’s constraint qualification. There also exist other types of
constraint qualifications that guarantee strong duality for various problems.

Dual problem. Dual problem refers to the following problem

maximize D(λ, µ)

subject to λ ∈ Rm

µ ≥ 0

(22.4)

where D is the dual function. Based on the duality theory, the solution for the dual problem
provides a lower bound for the solution of the primal problem (22.1). Sometimes this lower
bound can be −∞ and is completely useless. When strong duality holds, this solution for
the dual problem becomes really useful and is also a solution for the primal problem. Quite
often D(λ, µ) is only well-defined on a certain set and this poses some extra constraints to
the dual problem. We will demonstrate this by examples. Now we demonstrate how to
formulate dual problems by presenting a few example.

22.1 Dual of Linear Programming (LP)

Consider the following primal linear programming problem:

minimize cTx

subject to Ax = b
x ≥ 0

(22.5)
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To formulate the dual problem, we first write out the Lagrangian:

L(x, λ, µ) = cTx+ λT(Ax− b) + µT(−x) =
(
cT + λTA− µT

)
x− λTb

We have

D(λ, µ) = min
x∈Rp

L(x, λ, µ) =

{
−λTb if cT + λTA− µT = 0
−∞ Otherwise

(22.6)

Clearly D(λ, µ) is only well-defined for (λ, µ) satisfying c+ATλ−µ = 0. This actually poses
an extra constraint on the dual problem. Therefore, the dual problem is

maximize −bTλ

subject to c+ ATλ− µ = 0
µ ≥ 0

(22.7)

Notice we can eliminate µ by using the relation µ = c + ATλ. The dual problem is then
compactly rewritten as

maximize −bTλ

subject to c+ ATλ ≥ 0
(22.8)

We can see the dual problem for LP (22.5) is just another LP.

22.2 Dual of SDP

Now we consider the following semidefinite program (SDP) problem.

minimize cTx

subject to x1F1 + x2F2 + . . .+ xpFp −G ≤ 0
(22.9)

Here x ∈ Rp and we have

x =


x1
x2
...
xp


where xi (i = 1, 2, . . . , p) is just scaler. Here Fi (i = 1, 2, . . . , p) and G are all symmetric
matrices. The inequality x1F1 + x2F2 + . . .+ xpFp −G ≤ 0 just means (x1F1 + x2F2 + . . .+
xpFp−G) is a negative semidefinite matrix. To derive the dual problem for SDP, we need the
matrix version of Lagrangian formulations. Recall that the term µTg(x) in the Lagrangian
can be viewed as an inner product between the Lagrangian multiplier µ and the constraint
function g(x). For the SDP problem, the Lagrangian multiplier is a matrix Y and the inner
product between Y and (x1F1+x2F2+. . .+xpFp−G) is trace(Y (x1F1+x2F2+. . .+xpFp−G)).
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Let’s explain the inner product of two matrices first. Consider two symmetric matrices A
and B. If we put augment the entries of A as a vector and also augment all the entries of
B as a vector, then clearly the inner product of these two resultant vectors is

∑
i,j AijBij.

This sum can be compactly rewritten as traceAB where trace just denotes the sum of the
diagonal entries of a given matrix. Therefore, the Lagrangian for (22.9) can be written as

L(x, Y ) =cTx+ trace(Y (x1F1 + x2F2 + . . .+ xpFp −G))

=− trace(Y G) +

p∑
i=1

xi(ci + trace(Y Fi))

where ci is the i-th entry of c. We have

D(Y ) = min
x∈Rp

L(x, Y ) =

{
− trace(Y G) if ci + trace(Y Fi) = 0
−∞ Otherwise

(22.10)

Therefore, the dual problem for SDP is

maximize − trace(GY )

subject to trace(FiY ) + ci = 0, ∀i = 1, . . . , p
Y ≥ 0

Here Y ≥ 0 just states that Y is a positive semidefinite matrix. Clearly G, Fi, and ci are all
given, and Y is the decision variable for this dual problem.
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