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In this lecture, we talk about several standard optimization methods for the following
constrained optimization problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , l

(23.1)

Specifically, we will talk about penalty and barrier methods.

23.1 Revisit Augmented Lagrangian Method

First, consider a constrained optimization problem with only equality constraints.

minimize f(x)

subject to h(x) = 0
(23.2)

Recall that we have talked about the method of multipliers in the previous lectures. We
can form the augmented Lagrangian Lρ(x, λ) = f(x) + λTh(x) + ρ

2
‖h(x)‖2 and then apply

the method of multipliers.

xk+1 = arg min
x

Lρ(x, λk)

λk+1 = λk + ρh(xk+1)

The key issue here is how to select ρ. Since ρ is the stepsize for the update of λk, one has
to choose it carefully. If ρ is too small, the convergence of λk becomes slow. If ρ is too large,
the problem becomes ill-conditioned, and the update for λk can diverge. Typically we need
to vary ρ as k increases. The initial value ρ0 should not be too large to cause ill-conditioning
at the first step. Then ρk should increase at a reasonable rate to help the convergence of λk.
One practical scheme is to choose ρk+1 = βρk where β > 1 is some fixed constant.

Next we can convert (23.1) to the following optimization problem with only equality
constraints.

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m
gj(x) + s2j = 0, j = 1, . . . , l

(23.3)
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In the above problem, both x and sj are our decision variables.
Then any method designed for (23.2) can be directly used for (23.1). Clearly we can

apply the method of multipliers to (23.3). Notice both x and z are decision variables. But
the decision variables zj is only involved in the constraint and does not show up in the
objective function f . When applying the method of multipliers, we can first minimize the
augmented Lagrangian with respect to z and then minimize it with respect to x.

23.2 Penalty Methods

The method of multipliers can be viewed as a special case of the more general penalty
methods. When applying the method of multipliers, one does not enforce h(xk) = 0 for all
k. Therefore, the constraint h(x) = 0 is violated during the optimization process. The hope
is that eventually h(xk) will converge to 0 as k increases. The term ‖h(x)‖2 in the augmented
Lagrangian plays a key role here and can be viewed as a penalty for violation of the equality
constraint h(x) = 0. The larger h(x) is, the more penalty is added. The penalty methods do
not require the iterates to be strictly feasible and this can be beneficial for some problems.
Sometimes the Lagrangian multipliers are not involved in the penalty methods. One just
minimizes f(x) + ρk

2
‖h(x)‖2 directly. There are also other types of penalty functions that

are used in the penalty methods. We skip the details here. The key message is that penalty
methods do not require the iterates to be strictly feasible points for the original problem but
do penalize the violation of constraints by adding a penalty term into the objective function.

23.3 Barrier Methods

Different from the penalty methods, barrier methods do enforce the iterations to be strictly
feasible points. Hence barrier methods are also called interior point methods. Instead
of converting the problem into a form of (23.3), barrier methods handle the inequality
constraints directly by using the barrier functions.

For simplicity, consider the case where only inequality constraints are involved.

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , l
(23.4)

The barrier method replaces the inequality constraints with barrier functions that are
added to the objective functions. The barrier method involves solving a sequence of opti-
mization problems that become harder and harder but approximate the original problem
(23.4) better and better. Specifically, at every k, we solve the unconstrained minimization

minimize f(x) + εkB(x) (23.5)

where εk is a monotone decreasing sequence converging to 0 as k goes to ∞. The function
B(x) is the barrier function. Recall that the feasible set is {x : gj(x) ≤ 0, j = 1, . . . , l}.
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We define the interior (or the set of strictly feasible points) to be {x : gj(x) < 0, j =
1, . . . , l}. A key property for the barrier function is that B(x) goes to ∞ as x approaches
the boundary of the set {x : gj(x) ≤ 0, j = 1, . . . , l} from its interior. A typical example

for the barrier function is the logarithmic barrier function, i.e. B(x) = −
∑l

j=1 ln(−gj(x)).
As εk approaches 0, εkB(x) behaves as the indicator function for the set {x : gj(x) ≤
0, j = 1, . . . , l}. Suppose εk is sufficiently small. Then for the points near the boundary
of the feasible set, εkB(x) is very large. But for most points in the feasible set, we have
εkB(x) ≈ 0.

Suppose xk = arg min{f(x) + εkB(x)}. Since B(x) is not defined outside the feasible
set, we typically will end with a solution that is a feasible point. Hence the barrier method
enforces xk to be strictly feasible points during the optimization process. One can show that
xk converges to the solution for (23.4) as εk → 0. In addition, if gj and f are convex for all j,
the function f + εkB is also convex and obtaining xk only requires solving an unconstrained
optimization problem.

A natural question is why we need to solve the optimization in a sequential way? Why
don’t we start with some ε0 that is extremely small? The answer is that the problem (23.5)
is well-conditioned when εk is relatively large. Hence we can start with some relatively
large εk and the problem (23.5) is relatively simple. As we decrease εk, the unconstrained
optimization problem (23.5) approximates the original problem (23.4) better and better but
becomes more and more ill-conditioned and difficult to solve. The hope is that the solutions
for relatively larger εk provide some good initialization points when we attempt to solve the
problem with smaller εk later. Specifically, given εk+1 < εk, we know f(x) + εk+1B(x) is
more difficult to optimize compared with f(x)+εkB(x). However, arg min{f(x)+εk+1B(x)}
may not be that far from arg min{f(x) + εkB(x)} if εk+1 is not that different from εk.
Therefore, if we apply Newton’s method to optimize f(x) + εk+1B(x) with an initialization
at arg min{f(x) + εkB(x)}, it is reasonable to expect that we will be able to quickly get an
optimal point for f(x) + εk+1B(x) under many situations.

The barrier method (or interior point method) works well for several important convex
optimization problems including linear programming and moderate-size semidefinite pro-
gramming. However, when you have a general non-convex constrained optimization prob-
lem, it is not a trivial task to decide which methods you want to apply. One can try to
relax the given problems as linear programming or SDP (if possible) and then apply interior
point methods (or other available solvers) to solve the relaxations and obtain upper bounds
for the original problem. Another option is of course trying multiplier methods (or penalty
methods) directly.
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