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We have introduced the idea of barrier methods (or interior point methods). To demon-
strate their applications, we will talk about the related implementations for linear program-
ming in this lecture.

24.1 Short-step Implementation

Consider a linear programming problem in the following form:

minimize cTx

subject to Ax ≥ b
(24.1)

where A ∈ Rm×n with m ≥ n and rank(A) = n. In the above problem, we only have
inequality constraints. Denote the j-th row of A as AT

j . We can rewrite Ax ≥ b as m
constraints: AT

j x ≥ bj for j = 1, . . . ,m. Therefore, we can formulate the logarithmic barrier
function as

fε(x) = cTx− ε
m∑
j=1

ln(AT
j x− b)

It is straightforward to verify ∇2fε(x) = ε
∑m

j=1

AjA
T
j

(AT
j x−bj)2

> 0 under the assumption

rank(A) = n. Suppose fε is bounded below, then we know fε has a unique solution and
can be optimized using standard unconstrained optimization methods. However, as ε gets
smaller, the function fε becomes more ill-conditioned and the optimization becomes harder.

Importance of assumptions on finite minimizers. It is possible that the problem is
not bounded below and does not admit finite minimizers. It may turn out to be the case
that fε → −∞ as x → ∞. To see this, consider the simple example fε(x) = −ε ln(x). The
Hessian is ε

x2
> 0 for every x. However, this function is not bounded below. If the gradient

method is applied to minimize this function, it is not going to converge.

Recall that the basic version of interior point methods iterates as xk = arg min fεk(x). At
the step k+1, one updates εk+1 = ρεk where ρ < 1, and then calculate xk+1 = arg min fεk+1

(x)
by applying Newton’s method with an initialization point at xk.

It turns out that we do not need to solve arg min fεk+1
(x) exactly. At every step k+1, we

only need to perform one step for Newton update as xk+1 = xk− (∇2fεk+1
(xk))

−1∇fεk+1
(xk).
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This is the so-called short-step implementation of the interior point method. The gradient
of fε(x) can be calculated as ∇fε(x) = c− ε

∑m
j=1

Aj

AT
j x−bj

. Therefore, the short-step method

updates as

xk+1 = xk −

(
m∑
j=1

AjA
T
j

(AT
j x− bj)2

)−1(
c

εk+1

−
m∑
j=1

Aj
AT
j x− bj

)

where εk+1 = ρεk with some ρ < 1. If the short-step method is initialized with reasonably
good (x0, ε0) and the constant ρ is well chosen, then the short-step method is guaranteed
to converge at a linear rate. Typically the theoretical guarantees state that if ρ = 1 − 1

γ
√
n

and ∇fε0(x0)T[∇2fε0(x0)]
−1∇fε0(x0) ≤ β for some γ and β, then the short-step method

converges as a linear rate (1− M√
n
) where M depends on γ and β. Many results in this form

exist in the literature. For example, one can choose γ = 6 and β = 1
2
.

Remarks on the initial conditions. The initial condition is important for theory. The
condition ∇fε0(x0)T[∇2fε0(x0)]

−1∇fε0(x0) ≤ β just states that x0 is not that far from the
optimal point of fε0(x). Therefore, in theory one has to solve the first optimization problem
min fε0(x) with some accuracy and then the rest of the iterations will work fine. To make
things simple, in the homework, you are asked to start from the initial point x0 = 0. This
is a strictly feasible point if b < 0. However, this point may not be that close to the solu-
tion for min fε0(x). Hence the short-step method is not guaranteed to work with such naive
initializations. Increasing ρ sometimes helps stabilizing the short-step method if x0 is not
super far from the solution of min fε0(x). Tuning ρ can definitely affect the algorithm perfor-
mance. It is worth emphasizing again the importance of the finite minimizer assumptions.
Some problems do not admit finite solutions and the short-step method is going to diverge
on these problems.

24.2 Primal-Dual Implementation

Now we consider the linear programming in the following form.

minimize cTx

subject to Ax = b,
x ≥ 0

(24.2)

Recall the dual problem for the above LP is

maximize −bTλ

subject to c+ ATλ− µ = 0
µ ≥ 0

(24.3)

When solving (24.2), one tries to find the points satisfying the following KKT conditions:
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c+ ATλ− µ = 0 (24.4)

Ax = b (24.5)

x ≥ 0 (24.6)

µ ≥ 0 (24.7)

µ(j)x(j) = 0, ∀j (24.8)

where µ(j) and x(j) denote the j-th entry of µ and x, respectively. Notice (24.4) and (24.5)
are linear equations and can be efficiently solved. The two inequality conditions (24.6) and
(24.7) are also relatively easy to handle and let’s ignore them for now. We will come back
to this in the end of this note. The real difficult condition is the complementary slackness
condition (24.8), which is bilinear in x(j) and µ(j) for all j. Solving this bilinear equations
is less efficient.

The primal-dual implementation of the interior point method aims at finding points satis-
fying the KKT conditions by making use of the primal and dual formulations simultaneously.
Suppose we have initial points (x0, λ0, µ0) satisfying (24.4) and (24.5). Clearly the comple-
mentary slackness condition (24.8) is violated since typically one has µ0(j)x0(j) 6= 0. The
idea of the primal-dual method is that we find (xk, λk, µk) that satisfy (24.4), (24.5), and
µk(j)xk(j) = σ

n
µT
k−1xk−1 where 0 < σ < 1. Clearly µT

kxk = σµT
k−1xk−1. Then as k →∞, we

have µk(j)xk(j) → 0. Then we will end up with points satisfying (24.4), (24.5) and (24.8)
simultaneously.

Suppose (xk, λk, µk) satisfy (24.4) and (24.5). How can we find points (xk+1, λk+1, µk+1)
satisfying (24.4), (24.5), and µk+1(j)xk+1(j) = σ

n
µT
kxk? Denote xk+1 = xk + ∆x, λk+1 =

λk +∆λ, and µk+1 = µk +∆µ. Suppose (xk, λk, µk) satisfy (24.4) and (24.5). Now if we have
AT∆λ − ∆µ = 0 and A∆x = 0, we guarantee that (xk+1, λk+1, µk+1) satisfying (24.4) and
(24.5). However, the condition µk+1(j)xk+1(j) = σ

n
µT
kxk seems hard to enforce. Specifically,

we need

∆µ(j)xk(j) + µk(j)∆x(j) + µk(j)xk(j) + ∆µ(j)∆x(j) =
σ

n
µT
kxk

Given xk and µk, the above equation is bilinear in ∆µ and ∆x, causing trouble for computa-
tion. However, if we restrict ∆µ and ∆x to be not too large, then the higher order product
∆µ(j)∆x(j) can be ignored and we have a linear equation in ∆µ and ∆x. Hence we can
solve ∆x, ∆µ, and ∆λ using the following linear equations

AT∆λ−∆µ = 0

A∆x = 0

∆µ(j)xk(j) + µk(j)∆x(j) =
σ

n
µT
kxk − µk(j)xk(j)

Therefore, the idea for the primal-dual method is that we find a sequence of points that
always satisfy simple linear conditions (24.4) and (24.5) in the KKT conditions and come
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closer and closer to satisfy the more complicated bilinear complementary slackness condition
(24.8).

The final issue is that we also need x ≥ 0 and µ ≥ 0. A straightforward way to handle
this is that we initialize the update at points that strictly satisfy x0 > 0 and µ0 > 0. Then
we choose α0 small enough such that x0 + α∆x > 0 and µ0 + α∆µ > 0. Basically at every
step we can choose a stepsize αk to make sure that xk > 0 and µk > 0 are still enforced. By
doing this, we restrict our updates to be interior points of the inequality constraints (24.6)
and (24.7). There are also other ways to handle these two inequality constraints. We skip
the details here.
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