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Lecture 3
Unconstrained Optimization for Smooth Strongly-Convex Functions, Part III

Lecturer: Bin Hu, Date:09/06/2018

Previously, we have shown that the gradient method xk+1 = xk − α∇f(xk) converges to
the global min at a linear rate when the objective function f is L-smooth and m-strongly
convex. In this lecture, we will do three things.

1. Show that a quadratic function with a positive definite Hessian is L-smooth and m-
strongly convex.

2. Convert the convergence rate of the gradient method to some “iteration complexity”
bounds.

3. Introduce two application examples with L-smooth and m-strongly convex objective
functions: ridge regression and logistic regression.

In this lecture, we will need the following fact.
Fact 1: For a symmetric matrix A, one always has λmin‖x‖2 ≤ xTAx ≤ λmax‖x‖2 where

λmin and λmax are the smallest and largest eigenvalues of A, respectively.

More discussions about the above fact can be found in Prof. Srikant’s note. The discus-
sion is presented in the last three pages of “some linear algebra facts” listed on the following
site: https://sites.google.com/site/ece490spring2017/lecture-notes

3.1 Positive Definite Quadratic Problem

Consider the following objective function

f(x) =
1

2
xTQx+ qTx+ r (3.1)

where Q ∈ Rp×p, q ∈ Rp, and r ∈ R. In addition, Q is assumed to be positive definite.
Denote λmin and λmax as the smallest and largest eigenvalues of Q, respectively. Since Q is
positive definite, we have λmax ≥ λmin > 0.

We will show that f is λmax-smooth and λmin-strongly convex.

• Smoothness: Notice ∇f(x) = Qx+ q (verify this yourself!) and the largest eigenvalue
of Q2 is λ2max (why?). We have

‖∇f(x)−∇f(y)‖ = ‖Q(x− y)‖ =
√

(x− y)TQ2(x− y) ≤
√
λ2max‖x− y‖2 = λmax‖x− y‖

Therefore, by definition f is λmax-smooth.
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• Strong convexity: It is straightforward to verify that

f(x)− f(y)−∇f(y)(x− y) =
1

2
(x− y)TQ(x− y) ≥ λmin

2
‖x− y‖2

Therefore, we have f(x) ≥ f(y)+(∇f(y))T(x−y)+ λmin

2
‖x− y‖2 and f is λmin-strongly

convex.

Therefore, if we apply the gradient method xk+1 = xk − α∇f(xk) to minimize f , the
iterates xk will converge to the unique global min x∗ linearly. If we choose α = 1

λmax
, we will

have ρ = 1− λmin

λmax
.

In general, the ratio κ := L
m

is called the condition number. The condition number
describes how “difficult” the optimization problem is. If the condition number is small, it
means the problem is “well conditioned” and should be relatively easy. If the condition
number is large, it means the problem is “ill conditioned” and should be more difficult.

3.2 From convergence rate to iteration complexity

The convergence rate ρ naturally leads to an iteration number T guaranteeing the algorithm
to achieve the so-called ε-optimality, i.e. ‖xT − x∗‖ ≤ ε 1.

To guarantee ‖xT − x∗‖ ≤ ε, we can use the bound ‖xT − x∗‖ ≤ ρT‖x0 − x∗‖. If we
choose T such that ρT‖x0 − x∗‖ ≤ ε, then we guarantee ‖xT − x∗‖ ≤ ε. Denote c =
‖x0 − x∗‖. Then cρk ≤ ε is equivalent to

log c+ k log ρ ≤ log(ε) (3.2)

Notice ρ < 1 and log ρ < 0. The above inequality is equivalent to

k ≥ log
(ε
c

)
/ log ρ = log

(c
ε

)
/(− log ρ) (3.3)

So if we choose T = log
(
c
ε

)
/(− log ρ), we guarantee ‖xT − x∗‖ ≤ ε.

Notice log ρ ≤ ρ − 1 < 0 (this can be proved using the concavity of log function and
we will talk about concavity in later lectures), so 1

1−ρ ≥ −
1

log ρ
and we can also choose

T = log
(
c
ε

)
/(1− ρ) ≥ log

(
c
ε

)
/(− log ρ) to guarantee ‖xT − x∗‖ ≤ ε.

Another interpretation for T = log
(
c
ε

)
/(1 − ρ) is that a first-order Taylor expansion

of − log ρ at ρ = 1 leads to − log ρ ≈ 1 − ρ. So log
(
c
ε

)
/(− log ρ) is roughly equal to

log
(
c
ε

)
/(1− ρ) when ρ is close to 1.

Clearly the smaller T is, the more efficient the optimization method is. The iteration
number T describes the “ε-optimal iteration complexity” of the gradient method for smooth
strongly-convex objective functions.

1In many situations people require ε-optimal solution xT to satisfy f(xT ) − f(x∗) ≤ ε. We will talk
about this case in late lectures. Typically this ends up with the same iteration complexity since we have
f(x)− f(x∗) = O(‖x− x∗‖2) in many cases.
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• For the gradient method with α = 1
L

, we have ρ = 1 − m
L

= 1 − 1
κ

and hence T =
log
(
c
ε

)
/(1 − ρ) = κ log

(
c
ε

)
= O

(
κ log(1

ε
)
)
. 2 Here we use the big O notation to

highlight the dependence on κ and ε and hide the dependence on the constant c.

• For the gradient method with α = 2
L+m

, we have ρ = κ−1
κ+1

= 1 − 2
κ+1

and hence

T = log
(
c
ε

)
/(1 − ρ) = κ+1

2
log
(
c
ε

)
. Although κ+1

2
≤ κ, we still have κ+1

2
log
(
c
ε

)
=

O
(
κ log(1

ε
)
)
. Therefore, the stepsize α = 2

m+L
can only improve the constant C hidden

in the big O notation of the iteration complexity. People call this “improvement of a
constant factor”.

• In general, when ρ has the form ρ = 1− 1/(aκ+ b), the resultant iteration complexity
is always O

(
κ log(1

ε
)
)
.

How shall we interpret the iteration complexity O
(
κ log(1

ε
)
)
? It states that the required

iteration T scales with the condition number κ. For larger κ, more iterations are required.
This is consistent with our intuition since larger κ means the problem is ill-conditioned and
more difficult to solve. In later lectures, we will introduce more sophisticated algorithms
to decrease the iteration complexity for unconstrained optimization problems with smooth
strongly-convex objective functions. Specifically, we will discuss Nesterov’s method which
decreases the iteration complexity from O

(
κ log(1

ε
)
)

to O
(√

κ log(1
ε
)
)
.

3.3 Two application examples

Finally we will discuss two application examples for unconstrained optimization with smooth
strongly-convex objective functions.

3.3.1 Ridge regression

The ridge regression is formulated as an unconstrained minimization problem with the fol-
lowing objective function

f(x) =
1

n

n∑
i=1

(aTi x− bi)2 +
λ

2
‖x‖2 (3.4)

where ai ∈ Rp and bi ∈ R are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear relationship
between a and b. One wants to predict b from a as b = aTx. The ridge regression gives
a way to find such x based on the observed pairs of (ai, bi).

2For any functions h(ε, κ) and g(ε, κ), we say h(ε, κ) = O(g(ε, κ)) if there exists a constant C such that
|h(ε, κ)| ≤ C|g(ε, κ)|.
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• Why is there a term λ
2
‖x‖2? The term λ

2
‖x‖2 is called `2-regularizer. It confines

the complexity of the linear predictors you want to use. The high-level idea is that
you want x to work for all (a, b), not just the observed pairs (ai, bi). This is called
“generalization” in machine learning. So adding such a term can induce the so-called
stability and helps the predictor x to “generalize” for the data you have not seen. You
need to take a machine learning course if you want to learn about generalization.

• What is λ? λ is a hyperparameter which is tuned to trade off training performance and
generalization. For the purpose of this course, let’s say λ is a fixed positive number.
In practice, λ is typically set as a small number between 10−8 and 0.1.

Now we will show that f is L-smooth and m-strongly convex.
It is straightforward to verify that

f(x) =
1

2
xT

(
2

n

n∑
i=1

aia
T
i + λI

)
x−

(
2

n

n∑
i=1

biai

)T

x+
1

n

n∑
i=1

b2i

which is a special case of (3.1) with (Q, q, r) defined as

Q =
2

n

n∑
i=1

aia
T
i + λI

q =
2

n

n∑
i=1

biai

r =
1

n

n∑
i=1

b2i

Notice Q is positive definite (why?). Therefore, we can apply gradient method to ridge
regression, and obtain an iteration complexity O(κ log(1

ε
)) where κ is the condition number

of the positive definite matrix 2
n

∑n
i=1 aia

T
i + λI.

3.3.2 `2-Regularized Logistic regression

The `2-regularized logistic regression is formulated as an unconstrained minimization problem
with the following objective function

f(x) =
1

n

n∑
i=1

log(1 + e−bia
T
i x) +

λ

2
‖x‖2 (3.5)

where ai ∈ Rp and bi ∈ {−1, 1} are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear “classifier”
between a and b. Let’s say you have collected a lot of images for cats and dogs. You
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augment the pixels of any such image into a vector a and wants to predict whether the
image is a cat or a dog. Let’s say b = 1 if the image is a cat, and b = −1 if the image
is a dog. So you want to predict b based on a. You want to find x such that b = 1
when aTx ≥ 0, and b = −1 when aTx < 0. The logistic regression gives a way to find
such x based on the observed feature/label pairs of (ai, bi). You may want to take a
statistics course or a machine learning course if you want to learn more about logistic
regression.

• Why is there a term λ
2
‖x‖2? Again, the term λ

2
‖x‖2 is the `2-regularizer. It is used

to induce generalization and help x work on all the (a, b) not just the observed data
points (ai, bi).

The function (3.5) is also L-smooth and m-strongly convex. Hence the gradient method
can be applied here to achieve an iteration complexity of O(κ log(1

ε
)).
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