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In last lecture, we talked about two application examples: ridge regression and logistic
regression. In these two example, the objective function is L-smooth and m-strongly convex.
Therefore, you can use the gradient method to achieve the iteration complexity O(κ log(1

ε
)).

This means that if we want to guarantee ‖xT − x∗‖ ≤ ε, then we need to scale T linearly with
κ. In this lecture, we will introduce momentum methods that can accelerate the optimization
of smooth strongly-convex functions. Specifically, Nesterov’s accelerated method can improve
the iteration complexity from O(κ log(1

ε
)) to O(

√
κ log(1

ε
)). This improvement is significant.

Just consider κ = 10000. Then
√
κ = 100. This states that Nesterov’s method is roughly

100 times faster than the gradient method in this case.

4.1 Further Comments on Gradient Descent Method

Suppose the objective function is L-smooth and m-strongly convex. In previous lectures,
we have showed that the convergence rate of the gradient method with α = 1

L
is ρ =

1 − 1
κ
. A natural question is whether we can refine our analysis and prove an improved

convergence rate for the gradient method. The answer is no. There exists a function f
being L-smooth and m-strongly convex and an associated initial condition x0 such that

‖xk − x∗‖ =
(
1− 1

κ

)k ‖x0 − x∗‖. So there is no way to improve ρ for the gradient method
when seeking for a convergence rate guarantee for all the smooth strongly-convex functions.

To find a such f , just consider a quadratic function f = 1
2
xTQx with a positive definite

Q > 0. We have ∇f(xk) = Qxk. Clearly the global min is x∗ = 0. The gradient method
xk+1 = xk − α∇f(xk) just becomes xk+1 = (I − αQ)xk. Now we use the following fact.

Fact. If λ is an eigenvalue of Q, then 1− αλ is the eigenvalue of I − αQ.
Please verify the above fact by yourself.
Remember m is the smallest eigenvalue of Q. When α = 1

L
, the matrix I − αQ has an

eigenvalue at 1− m
L

. Choose x0 as the eigenvector associated with this eigenvalue, we have

‖xk − x∗‖ =
(
1− 1

κ

)k ‖x0 − x∗‖.
Basically the iteration complexity O(κ log(1

ε
)) is tight for the gradient method.

4.2 Motivations for Accelerated Methods

Recall the convergence rate analysis we have done for the gradient method. The iteration
complexity result O(κ log(1

ε
)) only requires the following inequality to hold for a particular
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x∗ and all x [
x− x∗
∇f(x)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− x∗
∇f(x)

]
≥ 0.

We do not even require the following inequality to hold for all x and y[
x− y

∇f(x)−∇f(y)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− y

∇f(x)−∇f(y)

]
≥ 0.

It is likely that the gradient method does not fully explore the properties of smooth
strongly-convex functions and this leads to a slow convergence. There is a possibility that
we can refine the optimization method to explore L-smooth and m-strongly convex properties
better so that we can eventually achieve an improved accelerated rate. This is actually the
case. Now we introduce such accelerated methods.

4.3 Momentum Methods

Momentum methods use the gradient information and the one-step memory xk−1. One such
example is the Heavy-ball method that iterates as

xk+1 = xk − α∇f(xk) + β(xk − xk−1) (4.1)

The extra term β(xk − xk−1) is the so-called “momentum term.” One needs to choose
the stepsize α and the momentum β, and also initialize the method at x0 and x−1. Then
based on this iteration, one can compute x1, x2, . . ..

With well-chosen α and β, the Heavy-ball method achieves faster convergence rate than
the gradient method for a positive definite quadratic minimization problem. However, the
same choice of α and β may not work for other smooth strongly-convex functions. On
the other hand, Nesterov’s method is proved to have an improved iteration complexity
O(
√
κ log(1

ε
)) for all the functions being L-smooth and m-strongly convex.

Nesterov’s accelerated method has the form

yk = xk + β(xk − xk−1) (4.2)

xk+1 = yk − α∇f(yk) (4.3)

We can simply rewrite Nesterov’s method as

xk+1 = xk − α∇f((1 + β)xk − βxk−1) + β(xk − xk−1) (4.4)

This looks very similar to Heavy-ball method. The difference is that Nesterov’s accelerated
method uses a gradient evaluated at (1 + β)xk − βxk−1 while Heavy-ball method uses a
gradient evaluated at xk.
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It is worth mentioning that both Heavy-ball method and Nesterov’s method only use the
first-order derivative (gradient) and do not require evaluating the second-order derivative
(Hessian). Hence they belong to “first-order optimization methods.”

We will not directly present the convergence rate proofs for Nesterov’s method. We will
first introduce a general model for first-order optimization methods. Then in later lectures
we will present a unified analysis for the general model and then the iteration complexity
results of Nesterov’s method will be obtained as a special case of our general analysis.

4.4 A General Model for First-Order Methods

A general model for first-order optimization methods is the following

ξk+1 = Aξk +Buk

vk = Cξk

uk = ∇f(vk)

(4.5)

where A, B, and C are matrices with compatible dimensions. In this general model, we can
choose (A,B,C) accordingly to recover various first-order methods.

1. For gradient method, we choose A = I, B = −αI, C = I, and ξk = xk. Then
vk = Cξk = xk, and uk = ∇f(vk) = ∇f(xk). The iteration ξk+1 = Aξk + Buk just
becomes xk+1 = Axk +Buk = xk − α∇f(xk), which is exactly the gradient method.

2. For Heavy-ball method, we choose A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, C =

[
I 0

]
,

and ξk =

[
xk
xk−1

]
. Then vk = Cξk =

[
I 0

] [ xk
xk−1

]
= xk, and uk = ∇f(vk) = ∇f(xk).

The iteration ξk+1 = Aξk +Buk becomes[
xk+1

xk

]
=

[
(1 + β)I −βI

I 0

] [
xk
xk−1

]
+

[
−αI

0

]
∇f(xk) =

[
(1 + β)xk − βxk−1 − α∇f(xk)

xk

]
which is exactly the iteration for Heavy-ball method.

3. For Nesterov’s accelerated method, we choose A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
,

C =
[
(1 + β)I −βI

]
, and ξk =

[
xk
xk−1

]
. Then vk = Cξk =

[
(1 + β)I −βI

] [ xk
xk−1

]
=

(1 + β)xk − βxk−1, and uk = ∇f(vk) = ∇f((1 + β)xk − βxk−1). The iteration ξk+1 =
Aξk +Buk becomes[

xk+1

xk

]
=

[
(1 + β)I −βI

I 0

] [
xk
xk−1

]
+

[
−αI

0

]
∇f(vk)

=

[
(1 + β)xk − βxk−1 − α∇f((1 + β)xk − βxk−1)

xk

]
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which is exactly the iteration (4.4) for Nesterov’s accelerated method.

We can see that the only difference between Nesterov’s accelerated method and Heavy-
ball method is the choice of C. The different choices of C lead to completely different
performance guarantees for these two methods when applied to smooth strongly-convex
objective functions. In later lectures, we will provide some unified analysis routine for the
general model (4.5). Then we will recover the iteration complexity O(

√
κ log 1

ε
) for Nesterov’s

method as a special case of our general analysis.
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