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In this lecture, we sketch out how to apply our routine to analyze Nesterov’s method.
Recall that Nesterov’s method can be written as

ξk+1 = Aξk +Buk

vk = Cξk

uk = ∇f(vk)

(7.1)

where A =

[
(1 + β)I −βI

I 0

]
, B =

[
−αI

0

]
, and C =

[
(1 + β)I −βI

]
. The convergence

rate proof of Nesterov’s method can be done by applying the dissipation inequality routine
presented in Lecture 6.

1. Replace the nonlinear equation uk = ∇f(vk) in (7.1) by some quadratic inequality in
the following form:[

ξk − ξ∗
uk

]T
X

[
ξk − ξ∗
uk

]
≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗))

= ρ2(f(xk)− f(xk+1)) + (1− ρ2)(f(x∗)− f(xk+1))

The key issue is how to figure out X. By L-smoothness and m-strong convexity of f ,
we have

f(xk)− f(xk+1) = f(xk)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)
T(xk − vk) +

m

2
‖xk − vk‖2 +∇f(vk)

T(vk − xk+1)−
L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X1

 xk − x∗
xk−1 − x∗
∇f(vk)


The last step in the above derivation requires substituting xk+1 = (1 +β)xk−βxk−1−
α∇f(vk) and vk = Cξk into the second-to-last line ∇f(vk)

T(xk − vk) + m
2
‖xk − vk‖2 +

∇f(vk)
T(vk − xk+1) − L

2
‖vk − xk+1‖2 and rewriting the resultant quadratic function.

You will be asked to write out this symmetric matrix X1 in Homework 2. Similarly, in
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Homework 2 you will be asked to find X2 such that

f(x∗)− f(xk+1) = f(x∗)− f(vk) + f(vk)− f(xk+1)

≥ ∇f(vk)
T(x∗ − vk) +

m

2
‖x∗ − vk‖2 +∇f(vk)

T(vk − xk+1)−
L

2
‖vk − xk+1‖2

=

 xk − x∗
xk−1 − x∗
∇f(vk)

T

X2

 xk − x∗
xk−1 − x∗
∇f(vk)


Then you can simply choose X = ρ2X1 + (1− ρ2)X2 for any 0 < ρ < 1, and we have xk − x∗

xk−1 − x∗
∇f(vk)

T

X

 xk − x∗
xk−1 − x∗
∇f(vk)

 ≤ −(f(xk+1)− f(x∗)) + ρ2(f(xk)− f(x∗)).

2. Test if there exists P ≥ 0 such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0. (7.2)

If so, then the following inequality holds

(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2(ξk − ξ∗)TP (ξk − ξ∗) ≤
[
ξk − ξ∗
uk

]T
X

[
ξk − ξ∗
uk

]
which is exactly the so-called dissipation inequality Vk+1−ρ2Vk ≤ S(ξk, uk) if we define

Vk = (ξk − ξ∗)TP (ξk − ξ∗) and S(ξk, uk) =

[
ξk − ξ∗
uk

]T
X

[
ξk − ξ∗
uk

]
. Clearly Vk ≥ 0 due

to the fact P ≥ 0. In Homework 2, I will provide the value of P and you will be asked

to verify that (7.2) holds with that P and (ρ2, α, β) = (1−
√

m
L
, 1
L
,
√
L−
√
m√

L+
√
m

)

3. Now directly apply the supply rate condition to conclude Vk+1 + f(xk+1) − f(x∗) ≤
ρ2 (Vk + f(xk)− f(x∗)). In Homework 2, you will be asked to convert this rate result

into an ε-optimal iteration complexity result O(
√

L
m

log 1
ε
). Specifically, you will be

asked to show that one can choose T = O(
√

L
m

log 1
ε
) to guarantee f(xT )− f(x∗) ≤ ε.

In Homework 2, you will be asked to flesh out all the detailed calculations for proving
the accelerated rate of Nesterov’s method.

Now we see that for L-smooth m-strongly convex objective function f , the iteration

complexity can be improved from O( L
m

log 1
ε
) to O(

√
L
m

log 1
ε
). Is this the end of the story

for optimization of smooth strongly-convex functions? The answer is no. Depending on
the structure of f , sometimes new issues come up. For example, consider the `2-regularized
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logistic regression with the objective function f = 1
n

∑n
i=1 log(1 + e−bia

T
i x) + µ

2
‖x‖2. In this

case, there is a finite-sum structure f = 1
n

∑n
i=1 fi. If we directly apply Nesterov’s method to

this problem, at each iteration we need to calculate the full gradient ∇f(x) = 1
n

∑n
i=1∇fi(x).

This full gradient evaluation requires calculating gradient on all fi and then averaging. When
n is large, the iteration cost is high. This motivates the application of stochastic gradient
method. We will talk about this in the next lecture.
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