In this lecture, we sketch out how to apply our routine to analyze Nesterov’s method. Recall that Nesterov’s method can be written as

\[
\begin{align*}
\xi_{k+1} &= A\xi_k + Bu_k \\
v_k &= C\xi_k \\
u_k &= \nabla f(v_k)
\end{align*}
\tag{7.1}
\]

where \(A = \begin{bmatrix} (1 + \beta)I & -\beta I \\ I & 0 \end{bmatrix}\), \(B = \begin{bmatrix} -\alpha I \\ 0 \end{bmatrix}\), and \(C = \begin{bmatrix} (1 + \beta)I & -\beta I \end{bmatrix}\). The convergence rate proof of Nesterov’s method can be done by applying the dissipation inequality routine presented in Lecture 6.

1. Replace the nonlinear equation \(u_k = \nabla f(v_k)\) in (7.1) by some quadratic inequality in the following form:

\[
\begin{bmatrix} \xi_k - \xi^* \\ u_k \end{bmatrix}^T X \begin{bmatrix} \xi_k - \xi^* \\ u_k \end{bmatrix} \leq -(f(x_{k+1}) - f(x^*)) + \rho^2(f(x_k) - f(x^*)) = \rho^2(f(x_k) - f(x_{k+1})) + (1 - \rho^2)(f(x^*) - f(x_{k+1}))
\]

The key issue is how to figure out \(X\). By \(L\)-smoothness and \(m\)-strong convexity of \(f\), we have

\[
f(x_k) - f(x_{k+1}) = f(x_k) - f(v_k) + f(v_k) - f(x_{k+1}) \geq \nabla f(v_k)^T(x_k - v_k) + \frac{m}{2}\|x_k - v_k\|^2 + \nabla f(v_k)^T(v_k - x_{k+1}) - \frac{L}{2}\|v_k - x_{k+1}\|^2
\]

\[
= \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \\ \nabla f(v_k) \end{bmatrix}^T X_1 \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \\ \nabla f(v_k) \end{bmatrix}
\]

The last step in the above derivation requires substituting \(x_{k+1} = (1 + \beta)x_k - \beta x_{k-1} - \alpha \nabla f(v_k)\) and \(v_k = C\xi_k\) into the second-to-last line and rewriting the resultant quadratic function. You will be asked to write out this symmetric matrix \(X_1\) in Homework 2. Similarly, in
Homework 2 you will be asked to find X_2 such that
\[
f(x^*) - f(x_{k+1}) = f(x^*) - f(v_k) + f(v_k) - f(x_{k+1}) \]
\[
\geq \nabla f(v_k)^T (x^* - v_k) + \frac{m}{2} \|x^* - v_k\|^2 + \nabla f(v_k)^T (v_k - x_{k+1}) - \frac{L}{2} \|v_k - x_{k+1}\|^2
\]
\[
= \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \\ \nabla f(v_k) \end{bmatrix}^T X_2 \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \\ \nabla f(v_k) \end{bmatrix}
\]

Then you can simply choose $X = \rho^2 X_1 + (1 - \rho^2) X_2$ for any $0 < \rho < 1$, and we have
\[
\begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \\ \nabla f(v_k) \end{bmatrix} X \begin{bmatrix} x_k - x^* \\ x_{k-1} - x^* \\ \nabla f(v_k) \end{bmatrix} \leq -(f(x_{k+1}) - f(x^*)) + \rho^2 (f(x_k) - f(x^*)�
\]

2. Test if there exists $P \geq 0$ such that
\[
\begin{bmatrix} A^T PA - \rho^2 P & A^T PB \\ B^T PA & B^T PB \end{bmatrix} - X \leq 0. \quad (7.2)
\]

If so, then the following inequality holds
\[
(\xi_{k+1} - \xi^*)^T P (\xi_{k+1} - \xi^*) - \rho^2 (\xi_k - \xi^*)^T P (\xi_k - \xi^*) \leq \begin{bmatrix} \xi_k - \xi^* \\ u_k \end{bmatrix}^T X \begin{bmatrix} \xi_k - \xi^* \\ u_k \end{bmatrix}
\]

which is exactly the so-called dissipation inequality $V_{k+1} - \rho^2 V_k \leq S(\xi_k, u_k)$ if we define $V_k = (\xi_k - \xi^*)^T P (\xi_k - \xi^*)$ and $S(\xi_k, u_k) = \begin{bmatrix} \xi_k - \xi^* \\ u_k \end{bmatrix}^T X \begin{bmatrix} \xi_k - \xi^* \\ u_k \end{bmatrix}$. Clearly $V_k \geq 0$ due to the fact $P \geq 0$. In Homework 2, I will provide the value of P and you will be asked to verify that (7.2) holds with that P and $(\rho^2, \alpha, \beta) = (1 - \sqrt{\frac{m}{L}}, \frac{1}{L}, \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L + \sqrt{m}}})$

3. Now directly apply the supply rate condition to conclude $V_{k+1} + f(x_{k+1}) - f(x^*) \leq \rho^2 (V_k + f(x_k) - f(x^*))$. In Homework 2, you will be asked to convert this rate result into an ε-optimal iteration complexity result $O(\sqrt{\frac{L}{m}} \log \frac{1}{\varepsilon})$. Specifically, you will be asked to show that one can choose $T = O(\sqrt{\frac{L}{m}} \log \frac{1}{\varepsilon})$ to guarantee $f(x_T) - f(x^*) \leq \varepsilon$.

In Homework 2, you will be asked to flesh out all the detailed calculations for proving the accelerated rate of Nesterov’s method.

Now we see that for L-smooth m-strongly convex objective function f, the iteration complexity can be improved from $O(\frac{L}{m} \log \frac{1}{\varepsilon})$ to $O(\sqrt{\frac{L}{m}} \log \frac{1}{\varepsilon})$. Is this the end of the story for optimization of smooth strongly-convex functions? The answer is no. Depending on the structure of f, sometimes new issues come up. For example, consider the ℓ_2-regularized
logistic regression with the objective function \(f = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-b_i a_i^T x}) + \frac{\mu}{2} \|x\|^2 \). In this case, there is a finite-sum structure \(f = \frac{1}{n} \sum_{i=1}^{n} f_i \). If we directly apply Nesterov’s method to this problem, at each iteration we need to calculate the full gradient \(\nabla f(x) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) \). This full gradient evaluation requires calculating gradient on all \(f_i \) and then averaging. When \(n \) is large, the iteration cost is high. This motivates the application of stochastic gradient method. We will talk about this in the next lecture.