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In the last lecture, we talked about how Nesterov’s method can lead to an improved

iteration complexity O(
√

L
m

log 1
ε
) when the objective function is L-smooth and m-strongly

convex. Is this the end of the story for unconstrained optimization of smooth strongly-convex
functions? The answer is no. Sometimes the problem may have some additional structure
which can be used to design new algorithms. In this lecture, we look at the finite-sum
minimization

min
x∈Rp

1

n

n∑
i=1

fi(x) (8.1)

The objective function has a finite sum structure, i.e. f = 1
n

∑n
i=1 fi. This type of objective

functions arise naturally from machine learning. The finite-sum minimization is also called
empirical risk minimization (ERM). In ERM, the number n is the number of the data points
in the training set. Typically one has fi(x) = li(x) + Ω(x) where li is the loss function
preventing underfit and Ω(x) is the regularizer preventing overfit. So li(x) measure how x
fits the i-th data point. The smaller li(x) is, the better x fits the i-th data point. Ω(x)
measures the complexity of x and can prevents overfitting. More motivations for ERM will
be taught in a machine learning course.

If we apply the gradient method or Nesterov’s method, we need to evaluate ∇f =
1
n

∑n
i=1∇fi for each iteration. In other words, we need to evaluate the gradient on all

the data points. The computation cost for each iteration scales with O(n). So the total
computation cost to achieve ε-accuracy is T ×O(n) where T is the iteration complexity. For
example, the total computation cost for the gradient method scales with

O

(
κ log

1

ε

)
×O(n) = O

(
nκ log

1

ε

)
Similarly, the total computation cost for Nesterov’s accelerated method scales with

O

(√
κ log

1

ε

)
×O(n) = O

(
n
√
κ log

1

ε

)
For big data applications, n is typically very large. The per iteration cost of the gradient

method and Nesterov’s method is high. This motivates the use of the stochastic gradient
descent (SGD) method. In this lecture, we will talk about the performance of SGD. This
lecture is completely for exposure purpose and is not going to be tested in homework or
exam since some background on probability and statistics may be required. This is the only
lecture that we talk about stochastic finite-sum optimization.
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8.1 SGD

SGD iterates as

xk+1 = xk − α∇fik(xk)

where ik is uniformly sampled from {1, 2, . . . , n} in an I.I.D manner. In other words, one
data point is sampled at every iteration and the gradient is only evaluated on that data
point. By doing this, the computation cost for each iteration does not depend on n and
scales with O(1). The hope is that there will be a lot of redundancy between data points
and SGD will work well in some average sense in the long run. In the extreme case where
fi = fj for all (i, j) (all the data points are the same), SGD requires the same iteration
number as the gradient method but the per iteration cost is n times smaller. But of course,
that is not going to happen for real problems. In general, SGD is very efficient in obtaining
a “rough” solution which is sufficiently useful for many learning problems (since one cares
more about testing errors for these applications).

Another related algorithm is the incremental gradient method where ik is based on a
prescribed permutation of {1, 2, . . . , n}. SGD has some nice statistical properties and cur-
rently is the most popular optimization method for machine learning applications. Both the
incremental gradient method and SGD cannot give an accurate solution for x∗. To see this,
just notice typically we have ∇fi(x∗) 6= 0 even when ∇f(x∗) = 0. Even if we set x0 = x∗,
we will have x1 = x0 − α∇f(x∗) 6= x∗ if α is a constant. So for a constant stepsize α, even
when SGD is initialized at the optimal point x∗, it is not going to stay there.

Now we make the following two assumptions:

1. f is m-strongly convex.

2. fi is L-smooth and convex for all i.

Under these two assumptions, we can show that SGD satisfies a bound in the following
form:

E‖xk − x∗‖2 ≤ ρ2k‖x0 − x∗‖2 +H (8.2)

where ρ2 = 1− 2mα +O(α2) and H = O(α). Here ρ2 quantifies the convergence speed and
H quantifies the accuracy. Therefore, for SGD, there is a fundamental trade-off between
the convergence speed and the accuracy. If one wants a very accurate solution, one has to
decrease α so that H is decreased. However, ρ2 increases as α decreases and the convergence
speed becomes slower.

In the deterministic case, we wants to make ρ2 small. For SGD, we want to balance ρ2

and H. If only a rough solution is required (i.e. it is OK to allow some inaccuracy at the
level of O(α)), the rate ρ2 = 1 − 2mα + O(α2) matches the order of the convergence rate
of the gradient method (recall that in HW1 we have shown ρ2 = 1 − 2mα + m2α2 for the
gradient method with α ≤ 2

m+L
).
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8.2 Analysis of SGD

To prove (8.2), we will slightly modify the dissipation inequality approach we have used
in the previous lectures. The main difference is that we need to take expectations of the
dissipation inequality. The supply rate condition is also different. Instead of S ≤ 0, we
need to use ES ≤ M for some constant M . This difference leads to the trade-off between
convergence speed ρ2 and accuracy H. In addition, we need to look at the general system
in the following form:

ξk+1 = Aξk +Buk

vk = Cξk

uk = ∇fik(vk)

So instead of uk = ∇f(vk), now we have uk = ∇fik(vk). SGD can be written in the above
model with A = I, B = −αI, C = I, and ξk = xk.

We follow the three-step routine again:

1. We replace uk = ∇fik(vk) with some quadratic inequality

E
[
xk − x∗
uk

]T [
0 −LI
−LI I

] [
xk − x∗
uk

]
≤ 2

n

n∑
i=1

‖∇fi(x∗)‖2 = M (8.3)

E
[
xk − x∗
uk

]T [
2mI −I
−I 0

] [
xk − x∗
uk

]
≤ 0 (8.4)

The above two inequalities not only depend on the function properties (the values of
(m,L), etc), but also depend on the sampling strategies of ik. Hence eventually the
above inequalities only hold in the average sense and we have to take expectation of
the inequalities. The proofs of these two inequalities require probabilistic arguments
and hence are omitted here. Send me an email if you want to know more about the
proofs of these two inequalities.

Now we just set X1 =

[
0 −LI
−LI I

]
and X2 =

[
2mI −I
−I 0

]
.

2. Now we test if there exists P ≥ 0 and non-negative scalers (λ1, λ2) such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
− λ1X1 − λ2X2 ≤ 0. (8.5)

If so, we have

E(ξk+1 − ξ∗)TP (ξk+1 − ξ∗)− ρ2E(ξk − ξ∗)TP (ξk − ξ∗)

≤λ1E
[
ξk − ξ∗
uk

]T
X1

[
ξk − ξ∗
uk

]
+ λ2E

[
ξk − ξ∗
uk

]T
X2

[
ξk − ξ∗
uk

]
≤λ1M
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For simplicity, we can choose P = I. Recall for SGD we have A = I and B = −αI.
Hence (8.5) is equivalent to[

1− ρ2 −α
−α α2

]
− λ1

[
0 −L
−L 1

]
− λ2

[
2m −1
−1 0

]
≤ 0 (8.6)

Now we set the left side to be a zero matrix. We have λ1 = α2, λ2 = α − λ1L, and
ρ2 = 1− 2mλ2 = 1− 2mα + 2mLα2.

3. Now the dissipation inequality leads to

E‖xk+1 − x∗‖2 ≤ ρ2E‖xk − x∗‖2 + λ1M

Iterating the above bound leads to

E‖xk − x∗‖2 ≤ρ2E‖xk−1 − x∗‖2 + λ1M

≤ρ4E‖xk−1 − x∗‖2 + (ρ2 + 1)λ1M

≤ρ2kE‖x0 − x∗‖2 +

(
∞∑
t=0

ρ2t

)
λ1M

=ρ2kE‖x0 − x∗‖2 +
λ1M

1− ρ2

From Step 2, we have ρ2 = 1−2mα+2mLα2 = 1−2mα+O(α2), and H = λ1M
1−ρ2 = O(α).

This leads to the desired conclusion (8.2).

8.3 More discussions

We have shown that for minimization of a sum of smooth strongly-convex functions, SGD
achieves a rate similar to the gradient method when one only seeks a “rough” solution. One
issue for SGD is that it cannot quickly converge to “accurate” solutions for ERM. If one
uses a time varying stepsize αk = O( 1

k
), SGD can converge to the solution x∗ but at a

sublinear rate. There are many methods that aim to take advantages of both SGD and the
gradient method. Specifically, it is desired to have an algorithm that converges linearly to
the optimal solution x∗ but the per iteration cost is O(1). The main technique to achieve
this is the so-called variance reduction technique. In the past five years, various researchers
have proposed many variance reduction methods, e.g. stochastic average gradient (SAG),
SVRG, SAGA, Finito, SDCA, SPDC, Katyusha, etc. If you are interested in this topic, just
send me an email for discussion.
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