ECE 490: Introduction to Optimization Fall 2018

Lecture 9
Unconstrained Optimization of Smooth Convex Functions, Part I

Lecturer: Bin Hu, Date:09/27/2018

In the previous lectures, we have talked about optimization of smooth strongly-convex
functions. What if the objective function f is just convex (not strongly-convex)? Recall a
differentiable function f is convex if the following inequality holds for all z,y

f@) > fy) + Vi) (z—y)

You can think convex functions as “O-strongly convex functions,” although the m-strong
convexity typically implicitly assume m > 0.
We need to answer three questions here.

1. Does the global min z* exists and is it unique for convex f? No! The global min
may not even exist. A trivial example is the linear function f(x) = x. Clearly f(x) =
fly) +Vf(y)T(x —y) and f is convex. But there does not exist a global min for this
function. When x* exists, there may be multiple global mins. Just think about the
function f(z) = 0. This function is convex and achieves its global min at any point z.

2. What algorithm shall we use? Suppose V f(z*) = 0. Then by the definition of convexity
we have f(x) > f(x*) + Vf(z*)T(z — 2*) = f(x*) for any x. So z* is a global min.
Therefore any algorithm designed to solve Vf(z*) = 0 can be applied. Again, we
will discuss first-order methods including the gradient method and the momentum
methods.

3. What performance guarantees can we say about these algorithms? For the gradient
method, we can show f(x) — f(2*) = O(1/k). For Nesterov’s accelerated method, we
can show f(x;) — f(z*) = O(1/k?). We don’t have linear convergence anymore. The
convergence rate O(1/k) and O(1/k?) are significantly slower than the linear conver-
gence rate O(p~*), and categorized as “sublinear convergence rates.” We will discuss
how to modify the dissipation inequality approach to show such sublinear convergence
rates.

9.1 A Revisit of Dissipation Inequality

The dissipation inequality has the following form

V(&) — p°V (&) < S(&, )

where V' is non-negative. Depending on the properties of S, the dissipation inequality reaches
different conclusions.
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1. If S(&, ur) < 0, then we have V(&p41) — p*V (&) < 0. This is a linear convergence in
V. We used this argument to show the linear convergence of the gradient method.

2. 1 S(&un) < —(f(wrer) — f(27) + p°(f () = f(27)), we have V(§i1) + f(@ra1) —
flx*) < p*(V(&) + f(xx) — f(z*)). This is also linear convergence. We used this
argument to show the linear convergence of Nesterov’s method.

3. How about having the condition S(&,ux) < f(z*) — f(zx) and p?> = 17 Then the
dissipation inequality leads to the inequality V(§k41) — V(&) + f(zg) — f(z*) < 0.
Summing this inequality leads to

> (fla) = f(2%) < V(&) = V(€r) < V(&)

t=0

The last step relies on the fact V' > 0. If we know f(x;) < f(x;—1), then the left side
of the above inequality can be lower bounded by (k+1)(f(zx) — f(2*)). Therefore, we
eventually have

<

flaw) - fa) < L&)

~k+1 (9:1)

This is a sublinear rate result. We will use this argument to show that the gradient
method is guaranteed to converge at the sublinear rate O(1/k) when the objective
function is smooth and convex.

9.2 Sublinear Convergence Rate of Gradient Method

The dissipation inequality is constructed by solving the following condition

[ATPA — P ATPB

BTPA BTPB] X =0 (92)

When f is smooth and convex, we want to show the gradient method converges at the rate
O(1/k). We have A = I, B = —al, and p? = 1. The key issue is how to choose X such that

* T *
T — T T — T %
X < — 9.3
If fis L-smooth and convex, the following inequality (actually we have used this in HW1)
holds for all x and y

F@) > f0)+ V) @~ ) + 5 V(@) = V)P
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We set © = 2* and y = x;, in the above inequality. This leads to

fla®) = flaw) + V flan)" (" = ) + iHVf(Q?*) =V f (i) |I*

1
which can be rewritten in the form of (9.3) with X = [_(i I fﬂ . We can set P = pl and
2t 2L

the condition (9.2) just becomes

BRI

_1

2 2L
When a = %, we can set p = % The left side of the above inequality just becomes a zero

matrix and the testing condition is met. Now the dissipation inequality holds. In addition,

we have f(xp11) — f(zg) < — <a - LTO‘2> IVf(zp)]]> <0. ' So we do have f(zgy1) < f(z),

and (9.1) follows as a consequence. Finally, we have shown the following bound holds for

the gradient method with a smooth and convex objective function

o Lllwo — 27
f(xk)_f@)fm

9.3 Extension for Nesterov’s Method

In the next lecture, we will modify Nesterov’s method for smooth and convex objective
functions. In this case, we will use time-varying parameters, i.e. «a; and . Consequently
we will have a time-varying optimization model:

Skt1 = Ar&r + Bruy,
vy = Cipép (9.5)
up = V f(vp)

Now (A, B,C) just depend on k. Nesterov’s method can achieve a rate O(1/k?). This is
faster than O(1/k). The proof relies on solving a modified testing condition

Al P Ay — p*Py Al Py By

— X, <0.
Bl Py A B} Pyy1By, b=

In the class I tried to briefly talk about this approach but clearly I confused a lot of people.
So let’s go through this in more details in the next lecture.

'In the proof of 1a in HW2, just set 3 = 0 and we directly get this result as a special case.
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