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Lecture 9
Unconstrained Optimization of Smooth Convex Functions, Part I

Lecturer: Bin Hu, Date:09/27/2018

In the previous lectures, we have talked about optimization of smooth strongly-convex
functions. What if the objective function f is just convex (not strongly-convex)? Recall a
differentiable function f is convex if the following inequality holds for all x, y

f(x) ≥ f(y) +∇f(y)T(x− y)

You can think convex functions as “0-strongly convex functions,” although the m-strong
convexity typically implicitly assume m > 0.

We need to answer three questions here.

1. Does the global min x∗ exists and is it unique for convex f? No! The global min
may not even exist. A trivial example is the linear function f(x) = x. Clearly f(x) =
f(y) +∇f(y)T(x− y) and f is convex. But there does not exist a global min for this
function. When x∗ exists, there may be multiple global mins. Just think about the
function f(x) = 0. This function is convex and achieves its global min at any point x.

2. What algorithm shall we use? Suppose∇f(x∗) = 0. Then by the definition of convexity
we have f(x) ≥ f(x∗) + ∇f(x∗)T(x − x∗) = f(x∗) for any x. So x∗ is a global min.
Therefore any algorithm designed to solve ∇f(x∗) = 0 can be applied. Again, we
will discuss first-order methods including the gradient method and the momentum
methods.

3. What performance guarantees can we say about these algorithms? For the gradient
method, we can show f(xk)− f(x∗) = O(1/k). For Nesterov’s accelerated method, we
can show f(xk) − f(x∗) = O(1/k2). We don’t have linear convergence anymore. The
convergence rate O(1/k) and O(1/k2) are significantly slower than the linear conver-
gence rate O(ρ−k), and categorized as “sublinear convergence rates.” We will discuss
how to modify the dissipation inequality approach to show such sublinear convergence
rates.

9.1 A Revisit of Dissipation Inequality

The dissipation inequality has the following form

V (ξk+1)− ρ2V (ξk) ≤ S(ξk, uk)

where V is non-negative. Depending on the properties of S, the dissipation inequality reaches
different conclusions.
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1. If S(ξk, uk) ≤ 0, then we have V (ξk+1)− ρ2V (ξk) ≤ 0. This is a linear convergence in
V . We used this argument to show the linear convergence of the gradient method.

2. If S(ξk, uk) ≤ −(f(xk+1) − f(x∗)) + ρ2(f(xk) − f(x∗)), we have V (ξk+1) + f(xk+1) −
f(x∗) ≤ ρ2(V (ξk) + f(xk) − f(x∗)). This is also linear convergence. We used this
argument to show the linear convergence of Nesterov’s method.

3. How about having the condition S(ξk, uk) ≤ f(x∗) − f(xk) and ρ2 = 1? Then the
dissipation inequality leads to the inequality V (ξk+1) − V (ξk) + f(xk) − f(x∗) ≤ 0.
Summing this inequality leads to

k∑
t=0

(f(xt)− f(x∗)) ≤ V (ξ0)− V (ξk+1) ≤ V (ξ0)

The last step relies on the fact V ≥ 0. If we know f(xt) ≤ f(xt−1), then the left side
of the above inequality can be lower bounded by (k+ 1)(f(xk)− f(x∗)). Therefore, we
eventually have

f(xk)− f(x∗) ≤ V (ξ0)

k + 1
(9.1)

This is a sublinear rate result. We will use this argument to show that the gradient
method is guaranteed to converge at the sublinear rate O(1/k) when the objective
function is smooth and convex.

9.2 Sublinear Convergence Rate of Gradient Method

The dissipation inequality is constructed by solving the following condition[
ATPA− ρ2P ATPB

BTPA BTPB

]
−X ≤ 0. (9.2)

When f is smooth and convex, we want to show the gradient method converges at the rate
O(1/k). We have A = I, B = −αI, and ρ2 = 1. The key issue is how to choose X such that[

xk − x∗
∇f(xk)

]T
X

[
xk − x∗
∇f(xk)

]
≤ f(x∗)− f(xk) (9.3)

If f is L-smooth and convex, the following inequality (actually we have used this in HW1)
holds for all x and y

f(x) ≥ f(y) +∇f(y)T(x− y) +
1

2L
‖∇f(x)−∇f(y)‖2
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We set x = x∗ and y = xk in the above inequality. This leads to

f(x∗) ≥ f(xk) +∇f(xk)
T(x∗ − xk) +

1

2L
‖∇f(x∗)−∇f(xk)‖2

which can be rewritten in the form of (9.3) with X =

[
0 −1

2
I

−1
2
I 1

2L
I

]
. We can set P = pI and

the condition (9.2) just becomes[
0 −αp
−αp α2p

]
−
[

0 −1
2

−1
2

1
2L

]
≤ 0 (9.4)

When α = 1
L

, we can set p = L
2
. The left side of the above inequality just becomes a zero

matrix and the testing condition is met. Now the dissipation inequality holds. In addition,

we have f(xk+1)− f(xk) ≤ −
(
α− Lα2

2

)
‖∇f(xk)‖2 ≤ 0. 1 So we do have f(xk+1) ≤ f(xk),

and (9.1) follows as a consequence. Finally, we have shown the following bound holds for
the gradient method with a smooth and convex objective function

f(xk)− f(x∗) ≤ L‖x0 − x∗‖2

2(k + 1)

9.3 Extension for Nesterov’s Method

In the next lecture, we will modify Nesterov’s method for smooth and convex objective
functions. In this case, we will use time-varying parameters, i.e. αk and βk. Consequently
we will have a time-varying optimization model:

ξk+1 = Akξk +Bkuk

vk = Ckξk

uk = ∇f(vk)

(9.5)

Now (A,B,C) just depend on k. Nesterov’s method can achieve a rate O(1/k2). This is
faster than O(1/k). The proof relies on solving a modified testing condition[

AT
kPk+1Ak − ρ2Pk AT

kPk+1Bk

BT
k Pk+1Ak BT

k Pk+1Bk

]
−Xk ≤ 0.

In the class I tried to briefly talk about this approach but clearly I confused a lot of people.
So let’s go through this in more details in the next lecture.

1In the proof of 1a in HW2, just set β = 0 and we directly get this result as a special case.
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