
Solutions for Mid-Term 1

ECE490 Introduction to Optimization Fall 2018

1 Problem 1

• (25 points) Show that the function

f(x1, x2) = 8x1 + 12x2 + x21 − 2x22

has only one stationary point, and that it is neither a local min or a local max, but a saddle
point.

(Hint: Stationary points are points whose gradients are 0.)

Solution: It is straightforward to obtain

∂f

∂x1
= 8 + 2x1

∂f

∂x2
= 12− 4x2

Setting 8 + 2x1 = 0 and 12 − 4x2 = 0, we get x1 = −4, and x2 = 3. And this is the only
stationary point.

Now we calculate the Hessian

∇2f =

[
2 0
0 −4

]
This Hessian has two eigenvalues: 2 and −4. Since the Hessian has one negative eigenvalue
and one positive eigenvalue, it is a (strict) saddle point.
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2 Problem 2

Consider the unconstrained minimization problem minx∈Rp f(x) where f : Rp → R is the
objective function. Suppose x∗ is a point satisfying ∇f(x∗) = 0. Apply the gradient method
with a constant stepsize α.

1. (5 points) Please write down the gradient descent method;

2. (10 points) When f is convex and L-smooth, the following inequality holds for all
x ∈ Rp

f(x∗) ≥ f(xk) +∇f(xk)
T(x∗ − xk) +

1

2L
‖∇f(xk)‖2

Use the above inequality to show the gradient method with a stepsize α = 1
L

satisfies

f(xk)− f(x∗) ≤ L‖x0 − x∗‖2

2(k + 1)

3. (10 points) Suppose f is m-strongly convex and L-smooth. Now the following inequality
holds for all x ∈ Rp[

x− x∗
∇f(x)

]T [
2mLI −(m+ L)I

−(m+ L)I 2I

] [
x− x∗
∇f(x)

]
≤ 0

Use the above inequality to show the gradient method with stepsize α = 1
L

satisfies

‖xk − x∗‖ ≤
(

1− m

L

)k
‖x0 − x∗‖

Solution:

1. xk+1 = xk − α∇f(xk).

2. Based on the inequality in the problem statement, we can choose X =

[
0 −1

2
I

−1
2
I 1

2L
I

]
such that the following inequality holds[

xk − x∗
∇f(xk)

]T
X

[
xk − x∗
∇f(xk)

]
≤ f(x∗)− f(xk)

Therefore, we will have p‖xk+1 − x∗‖2 − p‖xk − x∗‖2 ≤ f(x∗) − f(xk) if we can find
p > 0 such that [

0 −αp
−αp α2p

]
−
[

0 −1
2

−1
2

1
2L

]
≤ 0
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When α = 1
L

, we can just choose p = L
2

and the above condition will be satisfied. Now

we have proved L
2
‖xk+1 − x∗‖2− L

2
‖xk − x∗‖2 ≤ f(x∗)−f(xk). Summing this inequality

leads to

k∑
t=0

(f(xt)− f(x∗)) ≤ L

2
‖x0 − x∗‖2 −

L

2
‖xk+1 − x∗‖2 ≤

L

2
‖x0 − x∗‖2

Finally, due to the smoothness and the gradient iteration, we know f(xk+1) ≤ f(xk)

for all k. Hence we have (k+ 1)(f(xk)− f(x∗)) ≤
∑k

t=0(f(xt)− f(x∗)) ≤ L
2
‖x0 − x∗‖2.

We have reached the desired conclusion.

3. If we can find p > 0 such that[
(1− ρ2)p −αp
−αp α2p

]
−
[

2mL −(m+ L)
−(m+ L) 2

]
≤ 0

then we have p‖xk+1 − x∗‖2 ≤ ρ2p‖xk − x∗‖2. When α = 1
L

, we can just choose

ρ2 = 1 − 2m
L

+ m2

L2 and p = L2 such that the left matrix in the above inequality be-

comes

[
−m2 m
m −1

]
which is clearly negative semidefinite. This proves ‖xk+1 − x∗‖ ≤(

1− m
L

)
‖xk − x∗‖. Iterating this inequality leads to the desired conclusion.
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3 Problems 3

1. (10 points) Consider the positive definite quadratic minimization problem minx∈Rp
1
2
xTQx

where Q is a positive definite matrix. Apply the gradient method with the stepsize αk
chosen by the direct line search. What is αk? Write out αk as a function of Q and xk.

2. (15 points) Consider the problem of minimizing the function of two variables f(x, y) =
3x2+y4. Calculate one iteration of the gradient method with (1, 2) as the starting point
and with the stepsize chosen by the Armijo rule with α0 = 1, σ = 0.1, and β = 0.25.

Solution:

1. Notice ∇f(xk) = Qxk. Hence we have

αk = arg min
α

f(xk − α∇f(xk)) = arg min
α

(xk − αQxk)TQ (xk − αQxk)

Then we get

f(xk − α∇f(xk)) =
1

2
(xk − αQxk)TQ (xk − αQxk) =

1

2

(
xTkQxk − 2(xTkQ

2xk)α + (xTkQ
3xk)α

2
)

In the above expression, xTkQ
2xk and xTkQ

3xk are both just scalars. Due to the positive
definiteness of Q, we know the above problem is a one-dimensional positive definite
quadratic minimization problem and we can just set its derivative with respect to α to
be 0. We get

αk =
xTkQ

2xk
xTkQ

3xk

2. The function value at(x0, y0) is 3 + 16 = 19. The gradient at (x, y) is

[
6x
4y3

]
. The

gradient evaluated at (x0, y0) is

[
6
32

]
.

We have [
x0
y0

]
− α0β

m

[
6x0
4y30

]
=

[
(1− 6βm)x0
y0 − 4βmy30

]
and

f((1− 6βm)x0, y0 − 4βmy30) = 3(1− 6βm)2x20 + (y0 − 4βmy30)4

For m = 0, the above term is 810075 > 19 − 106 = −87. So the Arimjo condition is
not met. When m = 1, the above term is 1296.75 > 19 − 26.5 = −7.5. The Armijo
condition is not met. When m = 2, the above term is 1.17 < 19− 6.625 = 12.375. The
Armijo condition is met. So we should choose m = 2 and we have[

x1
y1

]
− α0β

2

[
6x0
4y30

]
=

[
(1− 6β2)x0
y0 − 4β2y30

]
=

[
0.625

0

]
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4 Problems 4

1. (25 points) Suppose we apply several first-order optimization methods to solve an
unconstrained minimization problem where the objective function f is L-smooth and
m-strongly convex. Suppose we have tried i) the gradient method with stepsize α = 1

L
;

ii) Nesterov’s method with α = 1
L

and β =
√
L−
√
m√

L+
√
m

; iii) Heavy-ball method with α =

4
(
√
L+
√
m)2

and β =
(√

L−
√
m√

L+
√
m

)2
; iv) a new method called triple momentum method which

achieves a convergence rate f(xk)−f(x∗) ≤
(
1− 2

√
m
L

)k
C (where C is some constant).

Figure 1 plots the iteration trajectories of ‖xk − x∗‖ for all these four methods. Suppose
the trajectories in Figure 1 are consistent with the convergence rate theory. There are
four trajectories in Figure 1, and each trajectory corresponds to one method. Your
task is to label the trajectory for each method. And briefly explain how you pair the
trajectory with the optimization method based on the convergence rate theory.

Figure 1:

Solution: The green curve is the gradient method since its guaranteed convergence rate is
much slower than the rates of Nesterov’s method and the triple momentum method. The
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convergence rate of the triple momentum method is slightly faster than Nesterov’s method
(by a constant factor). Heavy-ball method is not guaranteed to converge for general smooth
strongly-convex functions and may oscillate. Therefore, the black curve is Nesterov’s method,
and the red curve is the triple momentum method. Then the blue curve is the Heavy-ball
method.
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