ECE 490: Introduction to Optimization Fall 2018
Solutions for Homework 1

1

(a) Define g(t) := f(y +t(x — y)). Then we have fol g (t)dt = g(1) — g(0) = f(z) — f(y).
Notice ¢'(t) = Vf(y + t(x — y))"(x — y). Therefore, we have

(@)~ ) — V)@ —y) = / V4t — )T (@ — y)dt— Vi) (@ — )
- / (VI + bz —y)) — V) (@ — )t
< / IV fy + - ) — V@) - 1z — ylldt

L
< [ Ll =yl o = yledt = 5o -
0

In the last two steps, we used Cauchy-Schwartz inequality and the definition of L-smoothness.
This completes the proof.

(b) A differentiable function g is convex if g(x) > g(y) + Vg(y)"(z — y) for all z,y. In
order to prove this part, we will use the following fact.
Fact 1. If g is convex and L-smooth, then the following inequality holds for all z, y:

(Vo(y) ~ V() Ty — ) > 7Va(y) ~ Vo(a)|*

We first prove the above fact. At first, we define h(z) = g(x) — 2"Vg(y) and show
h(x) is L-smooth and h(y) < h(z) for any x. Notice Vh(z) = Vg(x) — Vg(y) and hence
Vh(y) = 0. In addition, h(z) — h(z) — Vh(2)T(z — 2) = g(z) — g(2) — (x — 2)"Vg(y) —
(Vg(2) = Vg(y)"(z — 2) = g(z) — g(2) — Vg(2)"(x — 2) for all x,z. Based on this relation,
g is convex and L-smooth if and only if A is also convex and L-smooth. The convexity of h
implies h(x) > h(z)+Vh(z)"T(x—z). Substituting 2 = y and Vh(y) = 0 leads to h(z) > h(y)
for all . Therefore, we have

1 1 L 1
h(y) <h (x - EVh(:U)) < h(z) + Vh(z)" (—th(x)> + §\|—Vh(:1:)/LH2 = h(x) — iHVh(a:)H2
In the above inequality, the first step follows from h(y) < h(z) for all . The second
step follows from the L-smoothness of h. The third step is basic algebra. Since h(z) =
g(z) — 2"Vg(y) and Vh(z) = Vg(x) — Vg(y), the above inequality is equivalent to

o) ~ 4"V o(u) < g(x) — 2"Vgly) — 5= Vo(x) ~ Vol
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Since the choice of y is arbitrary, the above inequality just holds for any z,y. We can
exchange (x,y) in the above inequality and obtain

() — " Vg(x) < 9(y) ~ v V(o) ~ 51| Vg(y) ~ Vol
Now Fact 1 can be directly proved via summing the above two inequalities.

Now we have proved Fact 1. Define g(z) := f(x)—%|z||*. We have Vg(z) = V f(z)—maz.
For any z,y, we have g(z) —g(y)—Vg(y)(z—y) = f(x) = f(y) = Z |z >+ 5 y> =V (y) (2~
y) +maTy —myl* = f(z) — f(y) = V) (x —y) — Tz — y[|>. Notice f is m-strongly
convex and it is straightforward to verify g(z) > g(y) + Vg(y)"(z — y). Hence g is convex.
Since f is L-smooth, the following inequality also holds
L—m

2
Therefore g is convex and (L — m)-smooth. Now we can use Fact 1 to get

(Vo(y) ~ Vo) Ty — ) > = Vg(y) ~ Vo(a)|”

—m

9(z) < g(y) + Vo) (x —y) + (B

which is equivalent to

(VH(y) = my = Vi (a) +ma) (g =) = 7

Manipulating the above inequality directly leads to the desired inequality we want to show.
This completes the proof.

1

—m

IV f(y) —my — V f(z) + mazl|?

(c) There are many different ways to prove this fact. We present one here. Other proofs
will also get the same credits.

If [Z ﬂ is positive semidefinite, by definition we have az? + 2bzy + cy? > 0 for any

[al
bl I
compatible dimension and a straightforward calculation yields

T -
vi| o |al b jor| 2 T 2 ()\2 (). () (7)\2
LJ {b[ cl} L@_ = al[or]|” + 2bvy vz + cf|va]| —Z(a(v1 )7+ 2bvy v + vy )>20

x,y € R. To show is positive semidefinite, we just pick any vector v = {vl} with

V2

J
where vij ) is the j-th entry of v; and véj ) is the j-th entry of vs.
) o I ol . . ) .
Now consider the other direction. Suppose [ZI . ]} is positive semidefinite. For any

x,y € R, we choose

oy Yy
0 0
U1 = . ) Vg = .
0 0
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Then we have
T i a b| |x _|n i al bl| |vg >0
Y b c| |y Vg bl cl| |vg| —

b| . . . .
c} is positive semidefinite.

Therefore, [Z

2.
(a) Assume x] and z% are both global min for f. We have V f(z}) = V f(z3) = 0. Since
f is m-strongly convex, we have

F@) = flas) + 5 llat = a3

f3) = f(a5) + 5l — a3

Adding the above two inequalities leads to the conclusion ||z} — z3|| < 0. Hence z} = 3.
Therefore the global min for f is unique.

. [1=p? —a —2mL m+ L
(b) The matrix { a 2} A {m%— I o

o } is negative semidefinite if and only if

(A(m + L) — @)
a? — 2\

P> >1—2mL\ —
2
!
A > —
-2

Therefore we have ||x;, — 2*|| < p¥||zg — 2*|| if we can find 0 < p < 1 and A > 0 satisfying
the above inequalities.

Now set A = Fa? with some ¢ > 0. Clearly A > % Substituting A = ££a? to the first

m+L)—a

inequality p? > 1 — 2mL) — & S ”® Jeads to the following inequality

P> >1—mL(l+t)a?+ (1 +t)a(m + L) = 2)"

41
t L L _22
=1—mLoz2—mLa2t—|—<CY(m+ )+Z;(m+ ) —2)
—1—mLa® — mLa2t + a?(m + L)*?* 4+ 2(a(m + L) —jt)(m + L)at + (a(m + L) — 2)?
2(m? + L2 L — m)2a2t 1) — 2)2
:H%—(WHL)(H( T)a +(oz(vn+4t) )
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We want to choose the smallest p and associated A that satisfy the above inequality.
(L-m)2a?t _ (a(m+L)—2)2 . .
7 = n and p satisfying

Hence we can choose t satisfying

2002 | T2
+L 1
pP=1+ % - (m+L)a+§((L—m)a)\/(a(m+L) —2)?
When a < mLJrL, we have
2(m2 4 [2 1
P = 1+%—(m+L>a+§(L—m)a(2—a<m+L))
=1-2ma + m*a®
= (1 — ma)?
Similarly, we have p> = (1 — La)® when o > —2-. This is equivalent to p = max{|1 —

mal, |1 — La]}. Also notice that p? is required to be greater than 0 and smaller than 1,
hence the formulas for p? only work for a < % Otherwise (1 — La)? > 1 when La > 2.

Hence the statement is true and we prove the desired conclusion.

1-4



