
ECE 490: Introduction to Optimization Fall 2018

Solutions for Homework 1

1.
(a) Define g(t) := f(y + t(x− y)). Then we have

∫ 1

0
g′(t)dt = g(1)− g(0) = f(x)− f(y).

Notice g′(t) = ∇f(y + t(x− y))T(x− y). Therefore, we have

f(x)− f(y)−∇f(y)T(x− y) =

∫ 1

0

∇f(y + t(x− y))T(x− y)dt−∇f(y)T(x− y)

=

∫ 1

0

(∇f(y + t(x− y))−∇f(y))T(x− y)dt

≤
∫ 1

0

‖∇f(y + t(x− y))−∇f(y)‖ · ‖x− y‖dt

≤
∫ 1

0

L‖x− y‖ · ‖x− y‖tdt =
L

2
‖x− y‖2

In the last two steps, we used Cauchy-Schwartz inequality and the definition of L-smoothness.
This completes the proof.

(b) A differentiable function g is convex if g(x) ≥ g(y) +∇g(y)T(x − y) for all x, y. In
order to prove this part, we will use the following fact.

Fact 1. If g is convex and L-smooth, then the following inequality holds for all x, y:

(∇g(y)−∇g(x))T(y − x) ≥ 1

L
‖∇g(y)−∇g(x)‖2.

We first prove the above fact. At first, we define h(x) = g(x) − xT∇g(y) and show
h(x) is L-smooth and h(y) ≤ h(x) for any x. Notice ∇h(x) = ∇g(x) − ∇g(y) and hence
∇h(y) = 0. In addition, h(x) − h(z) − ∇h(z)T(x − z) = g(x) − g(z) − (x − z)T∇g(y) −
(∇g(z)−∇g(y))T(x− z) = g(x)− g(z)−∇g(z)T(x− z) for all x, z. Based on this relation,
g is convex and L-smooth if and only if h is also convex and L-smooth. The convexity of h
implies h(x) ≥ h(z)+∇h(z)T(x−z). Substituting z = y and ∇h(y) = 0 leads to h(x) ≥ h(y)
for all x. Therefore, we have

h(y) ≤ h

(
x− 1

L
∇h(x)

)
≤ h(x) +∇h(x)T

(
− 1

L
∇h(x)

)
+
L

2
‖−∇h(x)/L‖2 = h(x)− 1

2L
‖∇h(x)‖2

In the above inequality, the first step follows from h(y) ≤ h(x) for all x. The second
step follows from the L-smoothness of h. The third step is basic algebra. Since h(x) =
g(x)− xT∇g(y) and ∇h(x) = ∇g(x)−∇g(y), the above inequality is equivalent to

g(y)− yT∇g(y) ≤ g(x)− xT∇g(y)− 1

2L
‖∇g(x)−∇g(y)‖2
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Since the choice of y is arbitrary, the above inequality just holds for any x, y. We can
exchange (x, y) in the above inequality and obtain

g(x)− xT∇g(x) ≤ g(y)− yT∇g(x)− 1

2L
‖∇g(y)−∇g(x)‖2

Now Fact 1 can be directly proved via summing the above two inequalities.
Now we have proved Fact 1. Define g(x) := f(x)−m

2
‖x‖2. We have∇g(x) = ∇f(x)−mx.

For any x, y, we have g(x)−g(y)−∇g(y)T(x−y) = f(x)−f(y)−m
2
‖x‖2+m

2
‖y‖2−∇f(y)T(x−

y) + mxTy −m‖y‖2 = f(x) − f(y) − ∇f(y)T(x − y) − m
2
‖x− y‖2. Notice f is m-strongly

convex and it is straightforward to verify g(x) ≥ g(y) +∇g(y)T(x − y). Hence g is convex.
Since f is L-smooth, the following inequality also holds

g(x) ≤ g(y) +∇g(y)T(x− y) +
L−m

2
‖x− y‖2.

Therefore g is convex and (L−m)-smooth. Now we can use Fact 1 to get

(∇g(y)−∇g(x))T(y − x) ≥ 1

L−m
‖∇g(y)−∇g(x)‖2

which is equivalent to

(∇f(y)−my −∇f(x) +mx)T(y − x) ≥ 1

L−m
‖∇f(y)−my −∇f(x) +mx‖2

Manipulating the above inequality directly leads to the desired inequality we want to show.
This completes the proof.

(c) There are many different ways to prove this fact. We present one here. Other proofs
will also get the same credits.

If

[
a b
b c

]
is positive semidefinite, by definition we have ax2 + 2bxy + cy2 ≥ 0 for any

x, y ∈ R. To show

[
aI bI
bI cI

]
is positive semidefinite, we just pick any vector v =

[
v1
v2

]
with

compatible dimension and a straightforward calculation yields[
v1
v2

]T [
aI bI
bI cI

] [
v1
v2

]
= a‖v1‖2 + 2bvT1 v2 + c‖v2‖2 =

∑
j

(
a(v

(j)
1 )2 + 2bv

(j)
1 v

(j)
2 + c(v

(j)
2 )2

)
≥ 0

where v
(j)
1 is the j-th entry of v1 and v

(j)
2 is the j-th entry of v2.

Now consider the other direction. Suppose

[
aI bI
bI cI

]
is positive semidefinite. For any

x, y ∈ R, we choose

v1 =


x
0
...
0

 , v2 =


y
0
...
0


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Then we have [
x
y

]T [
a b
b c

] [
x
y

]
=

[
v1
v2

]T [
aI bI
bI cI

] [
v1
v2

]
≥ 0

Therefore,

[
a b
b c

]
is positive semidefinite.

2.
(a) Assume x∗1 and x∗2 are both global min for f . We have ∇f(x∗1) = ∇f(x∗2) = 0. Since

f is m-strongly convex, we have

f(x∗1) ≥ f(x∗2) +
m

2
‖x∗1 − x∗2‖2

f(x∗2) ≥ f(x∗1) +
m

2
‖x∗1 − x∗2‖2

Adding the above two inequalities leads to the conclusion ‖x∗1 − x∗2‖ ≤ 0. Hence x∗1 = x∗2.
Therefore the global min for f is unique.

(b) The matrix

[
1− ρ2 −α
−α α2

]
+λ

[
−2mL m+ L
m+ L −2

]
is negative semidefinite if and only if

ρ2 ≥ 1− 2mLλ− (λ(m+ L)− α)2

α2 − 2λ

λ ≥ α2

2

Therefore we have ‖xk − x∗‖ ≤ ρk‖x0 − x∗‖ if we can find 0 < ρ < 1 and λ ≥ 0 satisfying
the above inequalities.

Now set λ = 1+t
2
α2 with some t > 0. Clearly λ ≥ α2

2
. Substituting λ = 1+t

2
α2 to the first

inequality ρ2 ≥ 1− 2mLλ− (λ(m+L)−α)2
α2−2λ leads to the following inequality

ρ2 ≥ 1−mL(1 + t)α2 +
((1 + t)α(m+ L)− 2)2

4t

= 1−mLα2 −mLα2t+
(tα(m+ L) + α(m+ L)− 2)2

4t

= 1−mLα2 −mLα2t+
α2(m+ L)2t2 + 2(α(m+ L)− 2)(m+ L)αt+ (α(m+ L)− 2)2

4t

= 1 +
α2(m2 + L2)

2
− (m+ L)α +

(L−m)2α2t

4
+

(α(m+ L)− 2)2

4t
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We want to choose the smallest ρ and associated λ that satisfy the above inequality.

Hence we can choose t satisfying (L−m)2α2t
4

= (α(m+L)−2)2
4t

and ρ satisfying

ρ2 = 1 +
α2(m2 + L2)

2
− (m+ L)α +

1

2
((L−m)α)

√
(α(m+ L)− 2)2

When α ≤ 2
m+L

, we have

ρ2 = 1 +
α2(m2 + L2)

2
− (m+ L)α +

1

2
(L−m)α(2− α(m+ L))

= 1− 2mα +m2α2

= (1−mα)2

Similarly, we have ρ2 = (1 − Lα)2 when α > 2
m+L

. This is equivalent to ρ = max{|1 −
mα|, |1 − Lα|}. Also notice that ρ2 is required to be greater than 0 and smaller than 1,
hence the formulas for ρ2 only work for α < 2

L
. Otherwise (1 − Lα)2 ≥ 1 when Lα ≥ 2.

Hence the statement is true and we prove the desired conclusion.
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