1.

(a) We start by writing out the Lagrangian

$$
L=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+\lambda\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}-5\right)
$$

Based on $\nabla_{x} L=0$, we have

$$
\begin{aligned}
& 2 x_{1}+\lambda=0 \\
& 2 x_{2}+\lambda=0 \\
& 2 x_{3}+\lambda=0 \\
& 2 x_{4}+\lambda=0 \\
& 2 x_{5}+\lambda=0
\end{aligned}
$$

In addition, we have

$$
\nabla_{\lambda} L=0 \rightarrow x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5
$$

We can solve the above equations and the only solution we get is

$$
x_{1}^{*}=x_{2}^{*}=x_{3}^{*}=x_{4}^{*}=x_{5}^{*}=1, \lambda^{*}=-2
$$

Notice $\nabla_{x x} L\left(x^{*}, \lambda^{*}\right)=2 I>0$ where I is the 5×5 identity matrix. Therefore, the above solution is the only local min for the problem.
(b) We can directly write out the Lagrangian as

$$
L(x, y, \lambda)=\frac{1}{2}\|x\|^{2}+\frac{1}{2}(y-b)^{2}+\lambda\left(a^{\top} x-y\right)
$$

If we fix λ, the minimization of L with respect to x and y is just a positive definite quadratic minimization problem. Hence we can directly set the derivatives of L to be zero and solve the global min. We fix λ and minimize L with respect to x and y as

$$
\begin{aligned}
\nabla_{x} L & =0 \rightarrow x=-\lambda a \\
\nabla_{y} L & =0 \rightarrow y=b+\lambda
\end{aligned}
$$

Therefore, the dual function is

$$
\begin{aligned}
D(\lambda) & =\frac{1}{2}\|a\|^{2} \lambda^{2}+\frac{1}{2} \lambda^{2}+\lambda\left(-b-\lambda-a^{T} a \lambda\right) \\
& =-\frac{1}{2}\left(1+\|a\|^{2}\right) \lambda^{2}-b \lambda
\end{aligned}
$$

2.

(a) ADMM updates x_{k+1} as follows:

$$
\begin{aligned}
x_{k+1} & =\underset{x}{\arg \min } L_{\rho}\left(x, y_{k}, \lambda_{k}\right) \\
& =\underset{x: A x=b}{\arg \min }\left\{\lambda_{k}^{\top}\left(x-y_{k}\right)+\frac{\rho}{2}\left\|x-y_{k}\right\|^{2}\right\} \\
& =\underset{x: A x=b}{\arg \min }\left\{\frac{\rho}{2}\left\|x-y_{k}+\lambda_{k} / \rho\right\|^{2}\right\}
\end{aligned}
$$

Therefore, we have

$$
x_{k+1}=\operatorname{proj}_{X}\left(y_{k}-\frac{\lambda_{k}}{\rho}\right)
$$

where X is the set $\{x: A x=b\}$. Similarly, we can show

$$
\begin{aligned}
& y_{k+1}=S_{1 / \rho}\left(x_{k+1}+\frac{\lambda_{k}}{\rho}\right) \\
& \lambda_{k+1}=\lambda_{k}+\rho\left(x_{k+1}-y_{k+1}\right)
\end{aligned}
$$

where $S_{1 / \rho}$ is the shrinkage operator that shrinks every value between $-1 / \rho$ and $1 / \rho$ to 0 .
(b) By definition, ADMM iterates as

$$
\begin{aligned}
& x_{k+1}^{i}=\underset{x^{i}}{\arg \min }\left\{f_{i}\left(x^{i}\right)+\left(\lambda_{k}^{i}\right)^{\top}\left(x^{i}-y_{k}\right)+\frac{\rho}{2}\left\|x^{i}-y_{k}\right\|^{2}\right\} \\
& y_{k+1}=\underset{y}{\arg \min }\left\{\sum_{i=1}^{n}\left(-\left(\lambda_{k}^{i}\right)^{\top} y+\frac{\rho}{2}\left\|x^{i}-y\right\|^{2}\right)\right\} \\
& \lambda_{k+1}^{i}=\lambda_{k}^{i}+\rho\left(x_{k+1}^{i}-y_{k+1}\right)
\end{aligned}
$$

Since $f_{i}\left(x^{i}\right)=\frac{1}{2}\left(a_{i}^{\top} x^{i}-b_{i}\right)^{2}$, we eventually have

$$
\begin{aligned}
x_{k+1}^{i} & =\left(a_{i} a_{i}^{\top}+\rho I\right)^{-1}\left(a_{i} b_{i}+\rho y_{k}-\lambda_{k}^{i}\right) \\
y_{k+1} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{k+1}^{i}+\lambda_{k}^{i} / \rho\right) \\
\lambda_{k+1}^{i} & =\lambda_{k}^{i}+\rho\left(x_{k+1}^{i}-y_{k+1}\right)
\end{aligned}
$$

