1.
(a) We start by writing out the Lagrangian
\[L = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + \lambda(x_1 + x_2 + x_3 + x_4 + x_5 - 5) \]

Based on \(\nabla_x L = 0 \), we have
\[
\begin{align*}
2x_1 + \lambda &= 0 \\
2x_2 + \lambda &= 0 \\
2x_3 + \lambda &= 0 \\
2x_4 + \lambda &= 0 \\
2x_5 + \lambda &= 0
\end{align*}
\]

In addition, we have
\[\nabla_{\lambda} L = 0 \rightarrow x_1 + x_2 + x_3 + x_4 + x_5 = 5 \]

We can solve the above equations and the only solution we get is
\[x_1^* = x_2^* = x_3^* = x_4^* = x_5^* = 1, \ \lambda^* = -2 \]

Notice \(\nabla_{xx} L(x^*, \lambda^*) = 2I > 0 \) where \(I \) is the 5 \(\times \) 5 identity matrix. Therefore, the above solution is the only local min for the problem.

(b) We can directly write out the Lagrangian as
\[L(x, y, \lambda) = \frac{1}{2} \|x\|^2 + \frac{1}{2}(y - b)^2 + \lambda(a^T x - y) \]

If we fix \(\lambda \), the minimization of \(L \) with respect to \(x \) and \(y \) is just a positive definite quadratic minimization problem. Hence we can directly set the derivatives of \(L \) to be zero and solve the global min. We fix \(\lambda \) and minimize \(L \) with respect to \(x \) and \(y \) as
\[
\begin{align*}
\nabla_x L &= 0 \rightarrow x = -\lambda a \\
\nabla_y L &= 0 \rightarrow y = b + \lambda
\end{align*}
\]

Therefore, the dual function is
\[
D(\lambda) = \frac{1}{2} \|a\|^2 \lambda^2 + \frac{1}{2} \lambda^2 + \lambda(-b - \lambda - a^T a \lambda) \\
&= -\frac{1}{2}(1 + \|a\|^2)\lambda^2 - b\lambda
\]
2.
(a) ADMM updates x_{k+1} as follows:

$$x_{k+1} = \text{arg min}_x L_p(x, y_k, \lambda_k)$$

$$= \arg \min_{x:Ax=b} \left\{ \lambda_k^T (x - y_k) + \frac{\rho}{2} \|x - y_k\|^2 \right\}$$

$$= \arg \min_{x:Ax=b} \left\{ \frac{\rho}{2} \|x - y_k + \lambda_k/\rho\|^2 \right\}$$

Therefore, we have

$$x_{k+1} = \text{proj}_X \left(y_k - \frac{\lambda_k}{\rho} \right)$$

where X is the set $\{x : Ax = b\}$. Similarly, we can show

$$y_{k+1} = S_{1/\rho} \left(x_{k+1} + \frac{\lambda_k}{\rho} \right)$$

$$\lambda_{k+1} = \lambda_k + \rho(x_{k+1} - y_{k+1})$$

where $S_{1/\rho}$ is the shrinkage operator that shrinks every value between $-1/\rho$ and $1/\rho$ to 0.

(b) By definition, ADMM iterates as

$$x_{k+1}^i = \arg \min_{x^i} \left\{ f_i(x^i) + (\lambda_{k+1}^i)^T(x^i - y_k) + \frac{\rho}{2} \|x^i - y_k\|^2 \right\}$$

$$y_{k+1} = \arg \min_y \left\{ \sum_{i=1}^n \left(-(\lambda_{k+1}^i)^T y + \frac{\rho}{2} \|x^i - y\|^2 \right) \right\}$$

$$\lambda_{k+1}^i = \lambda_k^i + \rho(x_{k+1}^i - y_{k+1})$$

Since $f_i(x^i) = \frac{1}{2}(a_i^T x^i - b_i)^2$, we eventually have

$$x_{k+1}^i = (a_ia_i^T + \rho I)^{-1}(a_ib_i + \rho y_k - \lambda_k^i)$$

$$y_{k+1} = \frac{1}{n} \sum_{i=1}^n (x_{k+1}^i + \lambda_k^i/\rho)$$

$$\lambda_{k+1}^i = \lambda_k^i + \rho(x_{k+1}^i - y_{k+1})$$