1. We write the Lagrangian and study the KKT conditions:

$$
\begin{aligned}
L\left(x, \lambda_{1}, \lambda_{2}\right) & =x^{2}+y^{2}+\lambda_{1}(1-x)+\lambda_{2}(-1-y) \\
\nabla_{y} L & =0, \lambda_{2}^{*}\left(-1-y^{*}\right)=0, y^{*} \geq-1, \lambda_{2}^{*} \geq 0 \rightarrow y^{*}=0, \lambda_{2}^{*}=0 \\
\nabla_{x} L & =0, \lambda_{1}^{*}\left(x^{*}-1\right)=0, x^{*} \geq 1, \lambda_{1}^{*} \geq 0 \rightarrow x^{*}=1, \lambda_{1}^{*}=2
\end{aligned}
$$

By solving the unconstrained minimization using barrior function, we have

$$
\nabla_{x} f_{\varepsilon_{k}}\left(x_{k}, y_{k}\right)=2 x_{k}-\frac{\varepsilon_{k}}{x_{k}-1}=0
$$

The above equation has two solutions, but only one solution is in the feasible set of the problem. Hence we have

$$
x_{k}=\frac{1+\sqrt{1+2 \varepsilon_{k}}}{2}
$$

Similarly, we have

$$
\nabla_{y} f_{\varepsilon_{k}}\left(x_{k}, y_{k}\right)=2 y_{k}-\frac{\varepsilon_{k}}{y_{k}+1}=0
$$

Again, the equation has two solutions, but only one of them satisfies $y_{K}+1 \geq 0$. We have

$$
\begin{gathered}
y_{k}=\frac{-1+\sqrt{1+2 \varepsilon_{k}}}{2} \\
\lim _{k \rightarrow \infty} \frac{1+\sqrt{1+2 \varepsilon_{k}}}{2}=1=x^{*} \\
\lim _{k \rightarrow \infty} \frac{-1+\sqrt{1+2 \varepsilon_{k}}}{2}=0=y^{*}
\end{gathered}
$$

It is important to note that the obtained solution at each step is inside the feasible set; that is the reason for choosing the larger root in solving the above quadratic equations.
2. Notice under the constraint $1+x-y^{2} \geq 0$, we have $x-2 y \geq y^{2}-2 y-1$, which is clearly bounded below. Hence the solution for this problem is not $-\infty$. Now we can use the KKT conditions.

$$
\begin{aligned}
L\left(x, y, \lambda_{1}, \lambda_{2}\right) & =x-2 y+\lambda_{1}\left(y^{2}-x-1\right)-\lambda_{2} y \\
\lambda_{1} & =\lambda_{2}=0 \rightarrow \text { Not feasible point } \\
\lambda_{1} & >0, y^{2}-x-1=0 \rightarrow x=0, y=1, \lambda_{1}=1, \lambda_{2}=0 \\
\lambda_{2} & >0, y=0 \rightarrow \text { not feasible }
\end{aligned}
$$

Therefore, the minimum is at $x^{*}=0, y^{*}=1$.
When applying the barrier function method, we have:

$$
\begin{array}{r}
1-\frac{\varepsilon_{k}}{1+x_{k}-y_{k}^{2}}=0 \\
-2+\frac{2 y_{k} \varepsilon_{k}}{1+x_{k}-y_{k}^{2}}-\frac{\varepsilon_{k}}{y_{k}}=0
\end{array}
$$

Since $\frac{\varepsilon_{k}}{1+x_{k}-y_{k}^{2}}=1$, the second equation becomes $-2+2 y_{k}-\frac{\varepsilon_{k}}{y_{k}}=0$. We can solve this equation to obtain $y_{k}=\frac{1+\sqrt{1+2 \varepsilon_{k}}}{2}$. We choose the larger root here since we require y_{k} to be a feasible point and satisfies $y_{k} \geq 0$.

Next, based on $1+x_{k}-y_{k}^{2}=\varepsilon_{k}$, we have $x_{k}=\varepsilon_{k}+y_{k}^{2}-1=\frac{3 \varepsilon_{k}-1+\sqrt{1+2 \varepsilon_{k}}}{2}$.
The limit is exactly the optimal point for the original problem.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{1+\sqrt{1+2 \varepsilon_{k}}}{2}=1=y^{*} \\
& \lim _{k \rightarrow \infty} \frac{3 \varepsilon_{k}-1+\sqrt{1+2 \varepsilon_{k}}}{2}=0=x^{*}
\end{aligned}
$$

