SOLUTIONS HW 1

1 Problem 1

1. f is continuous, \mathcal{S}_{1} is compact (closed and bounded). Hence, according to Weierstrass Theorem, f achieves its min and max over \mathcal{S}_{1}.
2. Since $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$, f is coercive. Also, \mathbb{R}^{4} is closed. Hence, by Corollary to Weierstrass Theorem, f achieves its min over \mathbb{R}^{4}, but not its max since $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$.
3. \mathcal{S}_{2} is closed and f is coercive. Hence, by Corollary to Weierstrass Theorem, f achieves its min over \mathcal{S}_{2}, but not its max since $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$.

2 Problem 2

1. No. Consider $f(x)=(1-x)^{3}$. Note that for $x=1$, we have $f^{\prime}(1)=0, f^{\prime \prime}(1) \geq 0$. However, $f(2)=-1<0=f(1)$, which shows that $x=1$ is not a local min.
2. $\nabla f(x)=0 \Rightarrow\left[2\left(x_{1}-2 x_{2}\right),-4\left(x_{1}-2 x_{2}\right)\right]^{T}=0$. The stationary points are the points of the line $\left\{\left(x_{1}, x_{2}\right): x_{1}=2 x_{2}\right\}$. Since $f\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}\right)^{2} \geq 0$ and the zero value of f is attained by and only by the stationary points $\left\{\left(x_{1}, x_{2}\right): x_{1}=2 x_{2}\right\}$, all stationary points are global minima.
An alternative way to solve this problem is to use the positive semidefiniteness of the Hessian matrix to show f is convex. Hence any stationary point is a global min.

3 Problem 3

1. $f^{\prime}(x)=0 \Rightarrow x_{1}=0, x_{2}=2 \sqrt{2}, x_{3}=-2 \sqrt{2}$ are the stationary points.
2. Since $f^{\prime \prime}\left(x_{1}\right)=-32<0, x_{1}$ is a local max. Since, $f^{\prime \prime}\left(x_{2}\right)=f\left(x_{3}\right)=64>0$, the x_{2}, x_{3} are a local minima.
3. Since, $f(\mathbf{x}) \rightarrow+\infty$ as $\|\mathbf{x}\| \rightarrow+\infty$ the global max does not exist. Function f is coercive and \mathbb{R} is closed, thus by Corollary to Weierstrass Theorem a global min exists and since $f\left(x_{2}\right)=f\left(x_{3}\right)=0$ both x_{2}, x_{3} are global minima.

4 Problem 4

1. The eigenvalues are 0 and 5 . Hence, A is PSD.
2. The eigenvalues are -1 and 3 . Hence, B is indefinite.
3. $\operatorname{det}([4])=4>0, \operatorname{det}(A)=-5<0$. Hence, C is not PSD. We can use a similar argument to show C is not NSD. Hence C is indefinite.
4. The eigenvalues of D are $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=4$. Hence, D is PD.
5. $\operatorname{det}([3])=3>0$, $\operatorname{det}\left(\begin{array}{ll}3 & 3 \\ 3 & 5\end{array}\right)=6>0$, $\operatorname{det}(-E)=45>0$. Hence, $-E$ is PD, and E is ND.

5 Problem 5

1. Let us consider $f(x)=-x^{2}$ and $\alpha=-1$, then $\mathcal{S}=(-\infty,-1] \cup[1,+\infty)$. The \mathcal{S} is not convex, because although $-1,1 \in \mathcal{S}$, we have $(-1+1) / 2=0 \notin \mathcal{S}$.

(2) We show the plot of the sets, and they are both convex.

Denote $\mathcal{S}_{p}=\left\{x \in \mathbb{R}^{2}:\|x\|_{p} \leq 1\right\}$. For any $x, y \in \mathcal{S}_{1}$ and arbitrary $t \in[0,1]$, we know $t x+(1-t) y \in \mathcal{S}_{1}$, since

$$
\begin{aligned}
\|t x+(1-t) y\|_{1}=\sum_{i=1}^{n}\left|t x_{i}+(1-t) y_{i}\right| & \leq \sum_{i=1}^{n} t\left|x_{i}\right|+(1-t)\left|y_{i}\right| \\
& =t \sum_{i=1}^{n}\left|x_{i}\right|+(1-t) \sum_{i=1}^{n}\left|y_{i}\right| \\
& =t\|x\|_{1}+(1-t)\|y\|_{1} \\
& \leq t+(1-t) \leq 1
\end{aligned}
$$

where we used the triangle inequality. Thus, \mathcal{S}_{1} is a convex set.

Similarly, any $x, y \in \mathcal{S}_{2}$ and arbitrary $t \in[0,1]$, we know $t x+(1-t) y \in \mathcal{S}_{2}$, since

$$
\begin{aligned}
\|t x+(1-t) y\|_{2}^{2}=\sum_{i=1}^{n}\left\|t x_{i}+(1-t) y_{i}\right\|_{2}^{2} & \leq \sum_{i=1}^{n} t\left\|x_{i}\right\|_{2}^{2}+(1-t)\left\|y_{i}\right\|_{2}^{2} \\
& =t \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2}+(1-t) \sum_{i=1}^{n}\left\|y_{i}\right\|_{2}^{2} \\
& =t\|x\|_{2}^{2}+(1-t)\|y\|_{2}^{2} \\
& \leq t+(1-t) \leq 1
\end{aligned}
$$

which indicating

$$
\|t x+(1-t) y\|_{2} \leq 1
$$

Thus \mathcal{S}_{2} is a convex set.
3. We observe that f can be rewritten as

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{T}\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 4 & 3 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+2
$$

Therefore, we can directly get

$$
\nabla^{2} f=\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 4 & 3 \\
2 & 3 & 1
\end{array}\right], \forall x
$$

Since $\operatorname{det}([4])=4>0, \operatorname{det}\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)=16>0$ and $\operatorname{det}\left(\nabla^{2} f\right)=-36<0$, we know $\nabla^{2} f$ is not PSD. Since $\operatorname{det}(-[4])=-4<0$, $\operatorname{det}\left(\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right)=16>0$ and $\operatorname{det}\left(-\nabla^{2} f\right)=36>0$, we know $\nabla^{2} f$ is not NSD. Therefore, $\nabla^{2} f$ is indefinite. We can conclude that f is neither convex nor concave.

