1 Problem 1

1. If is continuous, \(S_1 \) is compact (closed and bounded). Hence, according to Weierstrass Theorem, \(f \) achieves its min and max over \(S_1 \).

2. Since \(f(x) \to +\infty \) as \(\|x\| \to +\infty \), \(f \) is coercive. Also, \(\mathbb{R}^4 \) is closed. Hence, by Corollary to Weierstrass Theorem, \(f \) achieves its min over \(\mathbb{R}^4 \), but not its max since \(f(x) \to +\infty \) as \(\|x\| \to +\infty \).

3. \(S_2 \) is closed and \(f \) is coercive. Hence, by Corollary to Weierstrass Theorem, \(f \) achieves its min over \(S_2 \), but not its max since \(f(x) \to +\infty \) as \(\|x\| \to +\infty \).

2 Problem 2

1. No. Consider \(f(x) = (1 - x)^3 \). Note that for \(x = 1 \), we have \(f'(1) = 0 \), \(f''(1) \geq 0 \). However, \(f(2) = -1 < 0 = f(1) \), which shows that \(x = 1 \) is not a local min.

2. \(\nabla f(x) = 0 \Rightarrow [2(x_1 - 2x_2), -4(x_1 - 2x_2)]^T = 0 \). The stationary points are the points of the line \(\{(x_1, x_2) : x_1 = 2x_2\} \). Since \(f(x_1, x_2) = (x_1 - 2x_2)^2 \geq 0 \) and the zero value of \(f \) is attained by and only by the stationary points \(\{(x_1, x_2) : x_1 = 2x_2\} \), all stationary points are global minima.

An alternative way to solve this problem is to use the positive semidefiniteness of the Hessian matrix to show \(f \) is convex. Hence any stationary point is a global min.

3 Problem 3

1. \(f'(x) = 0 \Rightarrow x_1 = 0, x_2 = 2\sqrt{2}, x_3 = -2\sqrt{2} \) are the stationary points.

2. Since \(f''(x_1) = -32 < 0 \), \(x_1 \) is a local max. Since, \(f''(x_2) = f(x_3) = 64 > 0 \), the \(x_2, x_3 \) are a local minima.

3. Since, \(f(x) \to +\infty \) as \(\|x\| \to +\infty \) the global max does not exist. Function \(f \) is coercive and \(\mathbb{R} \) is closed, thus by Corollary to Weierstrass Theorem a global min exists and since \(f(x_2) = f(x_3) = 0 \) both \(x_2, x_3 \) are global minima.

4 Problem 4

1. The eigenvalues are 0 and 5. Hence, \(A \) is PSD.

2. The eigenvalues are \(-1 \) and 3. Hence, \(B \) is indefinite.

3. \(\det([4]) = 4 > 0 \), \(\det(A) = -5 < 0 \). Hence, \(C \) is not PSD. We can use a similar argument to show \(C \) is not NSD. Hence \(C \) is indefinite.

4. The eigenvalues of \(D \) are \(\lambda_1 = 1, \lambda_2 = \lambda_3 = 4 \). Hence, \(D \) is PD.

5. \(\det([3]) = 3 > 0 \), \(\det \left(\begin{array}{cc} 3 & 3 \\ 3 & 5 \end{array} \right) = 6 > 0 \), \(\det(-E) = 45 > 0 \). Hence, \(-E \) is PD, and \(E \) is ND.

5 Problem 5

1. Let us consider \(f(x) = -x^2 \) and \(\alpha = -1 \), then \(S = (-\infty, -1] \cup [1, +\infty) \). The \(S \) is not convex, because although \(-1, 1 \in S \), we have \((-1 + 1)/2 = 0 \notin S \).
(2) We show the plot of the sets, and they are both convex.

Denote $S_p = \{x \in \mathbb{R}^2 : \|x\|_p \leq 1\}$. For any $x, y \in S_1$ and arbitrary $t \in [0, 1]$, we know $tx + (1-t)y \in S_1$, since

$$
\|tx + (1-t)y\|_1 = \sum_{i=1}^{n} |tx_i + (1-t)y_i|
\leq \sum_{i=1}^{n} t|x_i| + (1-t)|y_i|
= t \sum_{i=1}^{n} |x_i| + (1-t) \sum_{i=1}^{n} |y_i|
= t\|x\|_1 + (1-t)\|y\|_1
\leq t + (1-t) \leq 1
$$

where we used the triangle inequality. Thus, S_1 is a convex set.
Similarly, any \(x, y \in S_2\) and arbitrary \(t \in [0, 1]\), we know \(tx + (1 - t)y \in S_2\), since
\[
\|tx + (1 - t)y\|_2^2 = \sum_{i=1}^{n} \|tx_i + (1 - t)y_i\|_2^2 \leq \sum_{i=1}^{n} t\|x_i\|_2^2 + (1 - t)\|y_i\|_2^2
\]
\[
= t \sum_{i=1}^{n} \|x_i\|_2^2 + (1 - t) \sum_{i=1}^{n} \|y_i\|_2^2
\]
\[
= t\|x\|_2^2 + (1 - t)\|y\|_2^2
\]
\[
\leq t + (1 - t) \leq 1 ,
\]
which indicating
\[
\|tx + (1 - t)y\|_2 \leq 1 .
\]
Thus \(S_2\) is a convex set.
3. We observe that \(f \) can be rewritten as

\[
f(x_1, x_2, x_3) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^T \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 3 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 2
\]

Therefore, we can directly get

\[
\nabla^2 f = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \forall x
\]

Since \(\det([4]) = 4 > 0, \det\left(\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}\right) = 16 > 0 \) and \(\det(\nabla^2 f) = -36 < 0 \), we know \(\nabla^2 f \) is not PSD.

Since \(\det([-4]) = -4 < 0, \det\left(\begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}\right) = 16 > 0 \) and \(\det(-\nabla^2 f) = 36 > 0 \), we know \(-\nabla^2 f \) is not NSD. Therefore, \(-\nabla^2 f \) is indefinite. We can conclude that \(f \) is neither convex nor concave.