1 Problem 1

1. The function f does not have maximum over \mathbb{R}^3 because $f(x_1, 0, 0) = 2x_1^2 - 2x_1 + 5$ is not bounded. The function f has a unique minimum. Indeed,

$$ \nabla f = [4x_1 - 2, 4x_2 + 2x_3 - 2, 2x_3 + 2x_2 - 2]^T $$

and $\nabla f(x) = 0 \Rightarrow (x_1, x_2, x_3) = (0.5, 0, 1)$. Since,

$$ \nabla^2 f = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix} $$

is PD, we conclude the result.

2. Since Q is PD we have $\nabla f(x) = Qx$. We consider $g(a_k) = f(x_k - a_k Q x_k)$ and we minimize g

$$ g(a_k) = f((I - a_k Q)x_k) = \frac{1}{2}x_k^T Qx_k - (x_k^T Q^2 x_k) a_k + \frac{1}{2} (x_k^T Q^3 x_k) a_k^2 $$

Hence $g(a_k)$ is minimized when $a_k = \frac{x_k^T Q^2 x_k}{x_k^T Q x_k}$

3. Let us consider matrix A whose i^{th} row is a_i and the column vector $b = (b_1, ..., b_n)^T$, then

$$ f(x) = \frac{1}{n} (Ax - b)^T (Ax - b) + \frac{\lambda}{2} x^T I x $$

$$ = \frac{1}{n} (x^T A^T A x + b^T b - b^T A x - x^T A^T b) + \frac{\lambda}{2} x^T I x $$

We have

$$ \nabla f = \frac{1}{n} (2A^T A x - 2A^T b) + \lambda x = \left(\frac{2}{n} A^T A + \lambda I \right) x - \frac{2}{n} A^T b $$

and $\nabla f = 0 \Rightarrow x^* = \left(A^T A + \frac{\lambda}{n} I \right)^{-1} A^T b$. Also, $\nabla^2 f = \frac{2}{n} A^T A + \lambda I$ is PD because $x^T \nabla^2 x = \frac{2}{n} (Ax)^T (Ax) + \lambda x^T x > 0$ for all $x \neq 0$. Hence, the optimal solution x^* is unique. It is worth mentioning that $A^T A = \sum_{i=1}^n a_i a_i^T$ and $A^T b = \sum_{i=1}^n a_i^T b_i$.

2 Problem 2

1. Let us fix $y_1, y_2 \in \mathbb{R}^n$, $x_1, x_2 \in \mathbb{R}^n$, $a \in [0, 1]$. First, we assume that f is convex and we prove that this is also the case for g. Indeed,

$$ g(ax_1 + (1 - a)x_2) = f((ax_1 + (1 - a)x_2)(y_1 - y_2) + y_2), \quad \text{by definition of } g $$

$$ = f(a(x_1(y_1 - y_2) + y_2) + (1 - a)(x_2(y_1 - y_2) + y_2)) $$

$$ \leq af(x_1(y_1 - y_2) + y_2) + (1 - a)f(x_2(y_1 - y_2) + y_2), \quad \text{by convexity of } f $$

$$ = ag(x_1) + (1 - a)g(x_2) $$

Next, we assume that g is convex and we prove that this is also the case for f. Indeed,

$$ f(ay_1 + (1 - a)y_2) = f(a(y_1 - y_2) + y_2) $$

$$ = g(a) $$

$$ \leq a g(1) + (1 - a) g(0), \quad \text{by convexity of } g $$

$$ = af(y_1) + (1 - a) f(y_2), \quad \text{by definition of } g $$

1
2. Yes. The function \(f(x) = x \log(x), \ x > 0 \) is convex since \(f''(x) = \frac{1}{x^2} > 0 \). We also prove that the function \(g(x, y) = x \log(x) + y \log(y) \) is convex. Indeed, let us fix \(x_1, x_2, y_1, y_2 \in \mathbb{R}^+ \) and \(a \in [0, 1] \), then
\[
g(ax_1 + (1 - a)x_2, ay_1 + (1 - a)y_2) = f(ax_1 + (1 - a)x_2) + f(ay_1 + (1 - a)y_2)
\leq af(x_1) + (1 - a)f(x_2) + af(y_1) + (1 - a)f(y_2) \tag{8}
= ag(x_1, y_1) + (1 - a)g(x_2, y_2)
\]
As a result the set \(S = \{ (x_1, x_2): x_1, x_2 > 0, \ g(x_1, x_2) \leq 4 \} \) is convex.

3. Let us fix \(x_1, x_2 \in \mathbb{R}^n \) and \(a \in [0, 1] \). By concavity of \(g \) it holds \(g(ax_1 + (1 - a)x_2) \geq ag(x_1) + (1 - a)g(x_2) \). In order to prove that \(f \circ g \) is concave, we proceed as follows
\[
f(g(ax_1 + (1 - a)x_2)) \geq f(ag(x_1) + (1 - a)g(x_2)), \quad \text{by concavity of } g, \ \text{& the fact } f \text{ is increasing}
\geq af(g(x_1)) + (1 - a)f(g(x_2)), \quad \text{by concavity of } f
\]
Hence, \(f \circ g \) is concave.

3 Problem 3
We must find the minimum \(m \) such that
\[
f(x_k + \beta^m \tilde{a} d_k) \leq f(x_k) + \sigma \beta^m \tilde{a} \nabla f^T d_k \tag{10}
\]
where \(\nabla f = [4x_1, 8x_2]^T \), and since we apply steepest decent we choose \(d_k = -\nabla f \). Hence, by substitution we obtain
\[
f(1 - 0.5^m 4, 0) = 2(1 - 0.5^m 4) \leq 2 - 0.80.5^m \tag{11}
\]
and the minimum \(m \) that satisfies the inequality is \(m = 2 \), which implies that \(a_k = \tilde{a} \beta^m = 1 \cdot 0.5^2 = 0.25 \).

4 Problem 4
We have
\[
f(x_k) - f(x_{k+1}) \geq (\nabla f(x_k))^T \alpha D \nabla f(x_k) - \frac{L}{2} \| \alpha D \nabla f(x_k) \|^2 \geq \alpha \left(\lambda_{\min} - \frac{L}{2} \alpha \lambda_{\max}^2 \right) \| \nabla f(x_k) \|^2 \tag{12}
\]
We know \(\lambda_{\min} - \frac{L}{2} \alpha \lambda_{\max}^2 > 0 \). We observe that
\[
\alpha \left(\lambda_{\min} - \frac{L}{2} \alpha \lambda_{\max}^2 \right) \sum_{k=0}^{n} \| \nabla f(x_k) \|^2 \leq f(x_0) - f(x_{n+1}) \leq f(x_0) - f_{\text{min}} \tag{13}
\]
As a result for all \(n \in \mathbb{N} \)
\[
\sum_{k=0}^{n} \| \nabla f(x_k) \|^2 \leq \frac{f(x_0) - f_{\text{min}}}{\alpha \left(\lambda_{\min} - \frac{L}{2} \alpha \lambda_{\max}^2 \right)} \tag{14}
\]
which implies that as \(n \to \infty \) the series converges and as a result \(\lim_{n \to \infty} \nabla f(x_n) = 0 \).

5 Problem 5
1. We have
\[
\nabla f = [2x_1 + 2 \frac{1 - \varepsilon}{1 + \varepsilon} x_2, 2x_2 + 2 \frac{1 - \varepsilon}{1 + \varepsilon} x_1]^T, \quad \text{and} \quad \nabla^2 f = \begin{pmatrix} 2 & 2 \frac{1 - \varepsilon}{1 + \varepsilon} \\ 2 \frac{1 - \varepsilon}{1 + \varepsilon} & 2 \end{pmatrix} \tag{15}
\]
Since \(0 < (1 - \varepsilon)/(1 + \varepsilon) < 1 \) we have \(\nabla^2 f > 0 \), the unique minimizer is the solution of \(\nabla f = 0 \) which is \(x_1 = x_2 = 0 \).
2. We must have
\[
\begin{pmatrix}
2 - m & 2 \frac{1 - \varepsilon}{1 + \varepsilon} \\
2 + \frac{1 - \varepsilon}{1 + \varepsilon} & 2 - m
\end{pmatrix} \succeq 0, \quad \begin{pmatrix}
M - 2 & -2 \frac{1 - \varepsilon}{1 + \varepsilon} \\
-2 + \frac{1 - \varepsilon}{1 + \varepsilon} & M - 2
\end{pmatrix} \succeq 0
\] (16)

or equivalently
\[
2 - m \geq 0, \quad (2 - m)^2 - \left(2 \frac{1 - \varepsilon}{1 + \varepsilon}\right)^2 \geq 0 \quad \text{and} \quad M - 2 \geq 0, \quad (M - 2)^2 - \left(2 \frac{1 - \varepsilon}{1 + \varepsilon}\right)^2 \geq 0
\] (17)

The largest possible \(m \) is \(2 - 2 \frac{1 - \varepsilon}{1 + \varepsilon} \) and the smallest possible \(M \) is \(2 + 2 \frac{1 - \varepsilon}{1 + \varepsilon} \). Hence, \(\kappa = M/m = 1/\varepsilon \)

3. As \(\varepsilon \to 0 \), it holds \(\kappa = 1/\varepsilon \to \infty \). Thus, we should expect gradient descent to converge slower.

4. In the following figures we first verify that as \(\varepsilon \to 0 \) the gradient descent converges slower and then that for \(\alpha = 1/M \) the algorithm converges.
Scatter plot of \((x_1, x_2)\) when \(\alpha = 1/M\) and \(\epsilon = 1\)

Scatter plot of \((x_1, x_2)\) when \(\alpha = 1/M\) and \(\epsilon = 0.1\)

Scatter plot of \((x_1, x_2)\) when \(\alpha = 1/M\) and \(\epsilon = 0.01\)

\(f(x_1, x_2)\) vs number of iterations when \(\alpha = 1/M\) and \(\epsilon = 1\)

\(f(x_1, x_2)\) vs number of iterations when \(\alpha = 1/M\) and \(\epsilon = 0.1\)

\(f(x_1, x_2)\) vs number of iterations when \(\alpha = 1/M\) and \(\epsilon = 0.01\)
Scatter plot of \((x_1, x_2)\) when \(\alpha = 1/M\) and \(e = 0.001\)

\[x_2\]

\[x_1\]

\[f(x_1, x_2)\) vs \#iterations when \(\alpha = 1/M\) and \(e = 0.001\)

\[\text{The number of iterations}\]
6 Problem 6

1. In order to prove this part, we use a property of smooth functions called Co-coercivity, which states that $\|\nabla g(x) - \nabla g(y)\|^2 \leq L(\nabla g(x) - \nabla g(y))^T(x - y)$ for any g being convex and L-smooth. First, we prove this property. Define $h(x) := g(x) - x^T\nabla g(y)$. By definition of convexity, $h(x)$ is convex when $g(x)$ is convex. In addition, we have $\nabla h(x) = \nabla g(x) - \nabla g(y)$. From this gradient formula, we can see h is L-smooth if g is L-smooth. In addition, h has the minimum at $x = y$ (since $\nabla h(y) = 0$). Therefore, we have $h(y) \leq h(z)$ for any arbitrary z. We choose $z = x - \frac{1}{L}\nabla h(x)$. Then we can use the L-smoothness of h to show

$$h(y) \leq h\left(x - \frac{1}{L}\nabla h(x)\right) \leq h(x) + \nabla h(x)^T(x - (1/L)\nabla h(x) - x) + \frac{L}{2}\|x - (1/L)\nabla h(x) - x\|^2$$

$$= h(x) - \frac{1}{2L}\|\nabla h(x)\|^2$$

From the above property, we can directly show the following (the second inequality holds since the first inequality holds for arbitrary (x, y) such that we can exchange x with y)

$$g(y) - y^T\nabla g(y) \leq g(x) - x^T\nabla g(y) - \frac{1}{2L}\|\nabla g(x) - \nabla g(y)\|^2$$

$$g(x) - x^T\nabla g(x) \leq g(y) - y^T\nabla g(x) - \frac{1}{2L}\|\nabla g(y) - \nabla g(x)\|^2$$

$$\rightarrow \frac{1}{L}\|\nabla g(x) - \nabla g(y)\|^2 + (\nabla g(y) - \nabla g(x))^T(x - y) \leq 0$$

$$\|\nabla g(x) - \nabla g(y)\|^2 \leq L(\nabla g(y) - \nabla g(x))^T(y - x)$$

The above inequality holds for any $L \geq 0$ (if $L = 0$, it is trivially true). Now, let $g(x) = f(x) - \frac{m}{2}\|x\|^2$. It is straightforward to verify the convexity of g as follows

$$g(y) = f(y) - \frac{m}{2}\|y\|^2 \geq f(x) + \nabla f(x)^T(y - x) + \frac{m}{2}\|y - x\|^2 - \frac{m}{2}\|y\|^2$$

$$= f(x) - \frac{m}{2}\|x\|^2 + (\nabla f(x) - mx)^T(y - x) = g(x) + \nabla g(x)^T(y - x)$$

Similarly, we can use the L-smoothness property of f to show that g is $(L - m)$-smooth.

$$g(y) = f(y) - \frac{m}{2}\|y\|^2 \leq f(x) + \nabla f(x)^T(y - x) + \frac{L}{2}\|y - x\|^2 - \frac{m}{2}\|y\|^2$$

$$= g(x) + \nabla g(x)^T(y - x) + \frac{L - m}{2}\|y - x\|^2$$

Using the co-coercivity property of g, the following inequality holds

$$\|\nabla g(x) - \nabla g(y)\|^2 \leq (L - m)(\nabla g(x) - \nabla g(y))^T(x - y)$$

which is equivalent to

$$\|\nabla f(x) - \nabla f(y) - m(x - y)\|^2 \leq (L - m)(\nabla f(x) - \nabla f(y) - mx + my)^T(x - y).$$

One can verify that the above inequality directly leads to the desired conclusion.

2. For $\alpha = \frac{1}{L}$ and $\rho = 1 - \frac{m}{L}$, we only need to show that we can find some non-negative λ to make the matrix

$$\begin{bmatrix} 1 - \rho^2 & -\alpha \\ -\alpha & \rho^2 \end{bmatrix} + \lambda\begin{bmatrix} -2mL & m + L \\ m + L & -2 \end{bmatrix}$$

negative semidefinite. Now we choose $\lambda = \frac{1}{L^2}$. Then we have

$$\begin{bmatrix} 1 - \rho^2 & -\alpha \\ -\alpha & \rho^2 \end{bmatrix} + \lambda\begin{bmatrix} -2mL & m + L \\ m + L & -2 \end{bmatrix} = \frac{1}{L^2}\begin{bmatrix} -m^2 & m \\ m & -1 \end{bmatrix}$$

The right side is clearly negative semidefinite due to the fact that $\begin{bmatrix} a \\ b \end{bmatrix}^T\begin{bmatrix} -m^2 & m \\ m & -1 \end{bmatrix}\begin{bmatrix} a \\ b \end{bmatrix} = -(ma - b)^2 \leq 0$ for arbitrary (a, b). Therefore, the gradient method with $\alpha = \frac{1}{L}$ converges as $\|x_k - x^*\| \leq (1 - \frac{m}{L^2})^k\|x_0 - x^*\|$.