SOLUTIONS HW 2

Problem 1

. The function f does not have maximum over R? because f(z1,0,0) = 22?2 — 21 + 5 is not bounded.
The function f has a unique minimum. Indeed,

V= [4z, — 2,49 + 223 — 2,223 + 229 — 2] (1)
and Vf(z) =0 = (z1,22,23) = (0.5,0,1). Since,

4.0 0 4.0 0 000
Vif=(0 4 2|=(0 2 0o)+]0 2 2 (2)
02 2 00 0 0 2 2

is PD, we conclude the result.

. Since Q is PD we have V f(z) = Qx. We consider g(a) = f(xr — ax Q zx) and we minimize g
1 1 .
glag) = f((I —ar Q) x) = ?lfkTka — (o} Q%xx)ay + 5(17{@3%)@% (3)
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Hence g(ay) is minimized when aj =

h

. Let us consider matrix A whose i'" row is a; and the column vector b = (by, .., b,)T, then

flz) = i(Aac —b)T(Az —b) + %xTIx

n

(4)
= l(xTATA:c +0'b — b" Az — 2T ATY) + %xTIx
n
We have . ) )
Vf= E(2ATAgc —2ATb) + Az = (ATA + )J) T — EATb (5)
n

and Vf = 0 = z* = (ATA+ %)\I)_l ATb. Also, V2f = 2ATA + Al is PD because 27 VZz =
%(Aa:)T(Ax) + AzTx > 0 for all z # 0. Hence, the optimal solution z* is unique. It is worth
mentioning that ATA =3""  a;al and ATo =" alb,.

7

Problem 2

. Let us fix y1, y2 € R™, x1, 22 € R”, a € [0,1]. First, we assume that f is convex and we prove that
this is also the case for g. Indeed,

glaz1 + (1 — a)xz) = f((az1 + (1 — a)x2)(y1 — y2) +y2), by definition of g
= fla(zi(yr — y2) + y2) + (1 — a)(@2(y1 — y2) + ¥2))

. 6
<af(zi(yr —y2) +y2) + (1 —a)f(z2(y1 — y2) +y2), by convexity of f ©)
=ag(z1) + (1 — a)g(x2)
Next, we assume that ¢ is convex and we prove that this is also the case for f. Indeed,
flayr + (1= a)yz2) = flalyr — y2) + y2)
=g(a)
(7)

<ag(l)+ (1 —a)g(0), by convexity of g
=af(y1)+ (1 —a)f(y2), by definition of g



2. Yes. The function f(x) = xlog(z), z > 0 is convex since f”(r) = L > 0. We also prove that the

x

function g(z,y) = zlog(z) + ylog(y) is convex. Indeed, let us fix z1, 2, y1, y2 € RT and a € [0,1],
then

glaxy + (1 = a)wz,ay; + (1 — a)y2) = flaxy + (1 —a)xe) + flayr + (1 — a)yz)
<af(r1)+ (1 —a)f(x2) +af(yr) + (1 —a)f(y2) (8)
= ag(z1,y1) + (1 — a)g(x2, y2)

As a result the set S = {(z1,z2) : 21, x2 >0, g(x1,22) < 4} is convex.

3. Let usfix 21, 2 € R™ and a € [0,1]. By concavity of g it holds g(az1+(1—a)z2) > ag(x1)+(1—a)g(z2).
In order to prove that f o g is concave, we proceed as follows

flglazs + (1 —a)xa)) > flag(z1) + (1 —a)g(xz)), by concavity of g, & the fact f is increasing

9
>af(g(x1))+ (1 —a)f(g(x2)), by concavity of f ©)
Hence, f o g is concave.
3 Problem 3
We must find the minimum m such that
flze + Bmady) < f(xr) +oB™aV fdy (10)
where Vf = [4z1,823]7, and since we apply steepest decent we choose dp = —V f. Hence, by substitution
we obtain
f(1-0.5"4,0) = 2(1 — 0.5™4)? <2 —0.80.5™ (11)

and the minimum m that satisfies the inequality is m = 2, which implies that a;, = &8™ = 1-0.5? = 0.25.

4 Problem 4

We have I
Fax) = f(@ren) = (V@) a DV f(ag) = S la DV fy)3
; (12)
> (i = 5 0¥ ) IV 10
We know \,in — %a/\fmr > 0. We observe that
L n
@ (Ain = 5 ¥ar ) L IVF @I < Flo) = Fonin) < Fo0)  fin (13)
k=0
As a result for all n € N .
f(xO) - fm'm
IV f(zp)]? < (14)
kZ:o o (Amin — a2 ..)
which implies that as n — oo the series converges and as a result lim Vf(z,) = 0.
n—oo
5 Problem 5
1. We have
V=[x +2£w %o+ 2z 1, and  V2f = 2 2% (15)
= 1 1+e 25 2 1+e 1] > - 2};2 92

Since 0 < (1 —¢)/(1+¢) < 1 we have V2f = 0, the unique minimizer is the solution of Vf = 0 which
is T = X9 = 0.



2. We must have

2—m 21—E> (M—2 —21—8>

_ IHe ) =0 _ I+e ) >0 (16)
1 Yy 1

( : e M-2

or equivalently

1—¢
1+¢

1—c¢
1+e

2—m >0, (2—m)2—<2 >2>0 and M —2>0, (M—2)2—(2 >2>0 (17)

. . 1— . . 1— o o

The largest possible m is 2 — 21—_‘_‘2 and the smallest possible M is 2 + Qﬁ. Hence, k = M/m = 1/¢

3. Ase — 0, it holds k = 1/e — oo. Thus, we should expect gradient descent to converge slower.

4. In the following figures we first verify that as ¢ — 0 the gradient descent converges slower and then
that for & = 1/M the algorithm converges.
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Scatter plot of (x1, x2) when alpha=1/M and e=0.001
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Problem 6

. In order to prove this part, we use a property of smooth functions called Co-coercivity, which states
that |[Vg(z) — Vg(y)||? < L(Vg(x) — Vg(y)) " (x — y) for any g being convex and L-smooth. First, we
prove this property. Define h(z) := g(x) — 27Vg(y). By definition of convexity, h(z) is convex when
g(x) is convex. In addition, we have Vh(z) = Vg(z) — Vg(y). From this gradient formula, we can
see h is L-smooth if g is L-smooth. In addition, i has the minimum at = = y (since Vh(y) = 0).
Therefore, we have h(y) < h(z) for any arbitrary z. We choose z = x — %Vh(x) Then we can use the
L-smoothness of h to show

h(y) <h (x — 2Vh(w)) < h(z) 4+ Vh(z)"(z — (1/L)Vh(z) — z) + ng — (1/L)Vh(z) — z||?

= h(x) ~ 5= |[Vh(@)]?

From the above property, we can directly show the following (the second inequality holds since the
first inequality holds for arbitrary (z,y) such that we can exchange = with y)

o) ~ ¥ Vo) < 9(2) 2TV o() — 5= [Vo(x) — Vo)
()~ 2TVg(x) < 9(y) ~ y"Vo(x) ~ 5= |Va(y) - Vo)

2 V(@) ~ Vo) + (Vo(y) ~ Vo(e) Tz —9) <0

[Vg(z) — Vg)lI* < L(Vg(y) — Vg(z)) (y — )

The above inequality holds for any L > 0 (if L = 0, it is trivially true). Now, let g(z) = f(z) — %]/
It is straightforward to verify the convexity of g as follows

m m m
9(5) = F) = Sl > f@) + VIl —2) + Tlly - 2l = Tyl
m

= f(2) = S llzl* + (Vf(@) = ma)T(y — ) = g(2) + Vg(2) " (y - )

Similarly, we can use the L-smoothness property of f to show that g is (L — m)-smooth.
m L m

9W) = f) = Slwl* < f(@) + V@) —2) + Sy =2 = S lyl®
L—m

2
Using the co-coercivity property of g, the following inequality holds

IVg(z) = Vg()|I> < (L —m)(Vg(z) — V()" (z —y)

=g(x) + V()" (y — z) + ly — ||

which is equivalent to

IV f(z) =V fy) —m(z —y)lI> < (L-m)(Vf(x) = VI(y) —mz+my) (z—y).
One can verity that the above inequality directly leads to the desired conclusion.

.Forcx:%andpzl—m

7, we only need to show that we can find some non-negative A to make the

2
matrix [1 —r _(21 + A [_sz me L] negative semidefinite. Now we choose A\ = ;. Then we
-« « m+ L -2 L

have

1-p? —« —2mL m+ L —"Lj m 1 [—=m2 m

{ - a2}+)\{m+L -2 }_[Fi —LLlj_LQ{m _J (18)

T 2

The right side is clearly negative semidefinite due to the fact that [Z} [_:; fﬂ {Z} = —(ma —

b)2 < 0 for arbitrary (a,b). Therefore, the gradient method with @ = + converges as ||zy — 2*|| <

5 L
(1=2)" llzo —a*|.



