
SOLUTIONS HW 2

1 Problem 1

1. The function f does not have maximum over R3 because f(x1, 0, 0) = 2x21 − 2x1 + 5 is not bounded.
The function f has a unique minimum. Indeed,

∇f = [4x1 − 2, 4x2 + 2x3 − 2, 2x3 + 2x2 − 2]T (1)

and ∇f(x) = 0⇒ (x1, x2, x3) = (0.5, 0, 1). Since,

∇2f =

4 0 0
0 4 2
0 2 2

 =

4 0 0
0 2 0
0 0 0

+

0 0 0
0 2 2
0 2 2

 (2)

is PD, we conclude the result.

2. Since Q is PD we have ∇f(x) = Qx. We consider g(ak) = f(xk − akQxk) and we minimize g

g(ak) = f((I − akQ)xk) =
1

2
xTkQxk − (xTkQ

2xk)ak +
1

2
(xTkQ

3xk)a2k (3)

Hence g(ak) is minimized when ak =
xT
k Q2xk

xT
k Q3xk

3. Let us consider matrix A whose ith row is ai and the column vector b = (b1, .., bn)T , then

f(x) =
1

n
(Ax− b)T (Ax− b) +

λ

2
xT Ix

=
1

n
(xTATAx+ bT b− bTAx− xTAT b) +

λ

2
xT Ix

(4)

We have

∇f =
1

n
(2ATAx− 2AT b) + λx =

(
2

n
ATA+ λI

)
x− 2

n
AT b (5)

and ∇f = 0 ⇒ x∗ =
(
ATA+ n

2λI
)−1

AT b. Also, ∇2f = 2
nA

TA + λI is PD because xT∇2x =
2
n (Ax)T (Ax) + λxTx > 0 for all x 6= 0. Hence, the optimal solution x∗ is unique. It is worth
mentioning that ATA =

∑n
i=1 aia

T
i and AT b =

∑n
i=1 a

T
i bi.

2 Problem 2

1. Let us fix y1, y2 ∈ Rn, x1, x2 ∈ Rn, a ∈ [0, 1]. First, we assume that f is convex and we prove that
this is also the case for g. Indeed,

g(ax1 + (1− a)x2) = f((ax1 + (1− a)x2)(y1 − y2) + y2), by definition of g

= f(a(x1(y1 − y2) + y2) + (1− a)(x2(y1 − y2) + y2))

≤ af(x1(y1 − y2) + y2) + (1− a)f(x2(y1 − y2) + y2), by convexity of f

= ag(x1) + (1− a)g(x2)

(6)

Next, we assume that g is convex and we prove that this is also the case for f . Indeed,

f(ay1 + (1− a)y2) = f(a(y1 − y2) + y2)

= g(a)

≤ a g(1) + (1− a) g(0), by convexity of g

= af(y1) + (1− a)f(y2), by definition of g

(7)
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2. Yes. The function f(x) = x log(x), x > 0 is convex since f ′′(x) = 1
x > 0. We also prove that the

function g(x, y) = x log(x) + y log(y) is convex. Indeed, let us fix x1, x2, y1, y2 ∈ R+ and a ∈ [0, 1],
then

g(ax1 + (1− a)x2, ay1 + (1− a)y2) = f(ax1 + (1− a)x2) + f(ay1 + (1− a)y2)

≤ af(x1) + (1− a)f(x2) + af(y1) + (1− a)f(y2)

= ag(x1, y1) + (1− a)g(x2, y2)

(8)

As a result the set S ≡ {(x1, x2) : x1, x2 > 0, g(x1, x2) ≤ 4} is convex.

3. Let us fix x1, x2 ∈ Rn and a ∈ [0, 1]. By concavity of g it holds g(ax1+(1−a)x2) ≥ ag(x1)+(1−a)g(x2).
In order to prove that f ◦ g is concave, we proceed as follows

f(g(ax1 + (1− a)x2)) ≥ f(ag(x1) + (1− a)g(x2)), by concavity of g, & the fact f is increasing

≥ af(g(x1)) + (1− a)f(g(x2)), by concavity of f
(9)

Hence, f ◦ g is concave.

3 Problem 3

We must find the minimum m such that

f(xk + βmα̃dk) ≤ f(xk) + σβmα̃∇fT dk (10)

where ∇f = [4x1, 8x
3
2]T , and since we apply steepest decent we choose dk = −∇f . Hence, by substitution

we obtain
f(1− 0.5m4, 0) = 2(1− 0.5m4)2 ≤ 2− 0.80.5m (11)

and the minimum m that satisfies the inequality is m = 2, which implies that ak = α̃βm = 1 · 0.52 = 0.25.

4 Problem 4

We have

f(xk)− f(xk+1) ≥ (∇f(xk))T αD∇f(xk)− L

2
‖αD∇f(xk)‖22

≥ α
(
λmin −

L

2
αλ2max

)
‖∇f(xk)‖2

(12)

We know λmin − L
2 αλ

2
max > 0. We observe that

α

(
λmin −

L

2
αλ2max

) n∑
k=0

‖∇f(xk)‖2 ≤ f(x0)− f(xn+1) ≤ f(x0)− fmin (13)

As a result for all n ∈ N
n∑

k=0

‖∇f(xk)‖2 ≤ f(x0)− fmin

α
(
λmin − L

2 αλ
2
max

) (14)

which implies that as n→∞ the series converges and as a result lim
n→∞

∇f(xn) = 0.

5 Problem 5

1. We have

∇f = [2x1 + 2
1− ε
1 + ε

x2, 2x2 + 2
1− ε
1 + ε

x1]T , and ∇2f =

(
2 2 1−ε

1+ε

2 1−ε
1+ε 2

)
(15)

Since 0 < (1− ε)/(1 + ε) < 1 we have ∇2f � 0, the unique minimizer is the solution of ∇f = 0 which
is x1 = x2 = 0.
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2. We must have (
2−m 2 1−ε

1+ε

2 1−ε
1+ε 2−m

)
� 0,

(
M − 2 −2 1−ε

1+ε

−2 1−ε
1+ε M − 2

)
� 0 (16)

or equivalently

2−m ≥ 0, (2−m)2 −
(

2
1− ε
1 + ε

)2

≥ 0 and M − 2 ≥ 0, (M − 2)2 −
(

2
1− ε
1 + ε

)2

≥ 0 (17)

The largest possible m is 2− 2 1−ε
1+ε and the smallest possible M is 2 + 2 1−ε

1+ε . Hence, κ = M/m = 1/ε

3. As ε→ 0, it holds κ = 1/ε→∞. Thus, we should expect gradient descent to converge slower.

4. In the following figures we first verify that as ε → 0 the gradient descent converges slower and then
that for α = 1/M the algorithm converges.
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6 Problem 6

1. In order to prove this part, we use a property of smooth functions called Co-coercivity, which states
that ‖∇g(x)−∇g(y)‖2 ≤ L(∇g(x)−∇g(y))T(x− y) for any g being convex and L-smooth. First, we
prove this property. Define h(x) := g(x) − xT∇g(y). By definition of convexity, h(x) is convex when
g(x) is convex. In addition, we have ∇h(x) = ∇g(x) − ∇g(y). From this gradient formula, we can
see h is L-smooth if g is L-smooth. In addition, h has the minimum at x = y (since ∇h(y) = 0).
Therefore, we have h(y) ≤ h(z) for any arbitrary z. We choose z = x− 1

L∇h(x). Then we can use the
L-smoothness of h to show

h(y) ≤ h
(
x− 1

L
∇h(x)

)
≤ h(x) +∇h(x)T(x− (1/L)∇h(x)− x) +

L

2
‖x− (1/L)∇h(x)− x‖2

= h(x)− 1

2L
‖∇h(x)‖2

From the above property, we can directly show the following (the second inequality holds since the
first inequality holds for arbitrary (x, y) such that we can exchange x with y)

g(y)− yT∇g(y) ≤ g(x)− xT∇g(y)− 1

2L
‖∇g(x)−∇g(y)‖2

g(x)− xT∇g(x) ≤ g(y)− yT∇g(x)− 1

2L
‖∇g(y)−∇g(x)‖2

→ 1

L
‖∇g(x)−∇g(y)‖2 + (∇g(y)−∇g(x))T(x− y) ≤ 0

‖∇g(x)−∇g(y)‖2 ≤ L(∇g(y)−∇g(x))T(y − x)

The above inequality holds for any L ≥ 0 (if L = 0, it is trivially true). Now, let g(x) = f(x)− m
2 ‖x‖

2.
It is straightforward to verify the convexity of g as follows

g(y) = f(y)− m

2
‖y‖2 ≥ f(x) +∇f(x)T(y − x) +

m

2
‖y − x‖2 − m

2
‖y‖2

= f(x)− m

2
‖x‖2 + (∇f(x)−mx)T(y − x) = g(x) +∇g(x)T(y − x)

Similarly, we can use the L-smoothness property of f to show that g is (L−m)-smooth.

g(y) = f(y)− m

2
‖y‖2 ≤ f(x) +∇f(x)T(y − x) +

L

2
‖y − x‖2 − m

2
‖y‖2

= g(x) +∇g(x)T(y − x) +
L−m

2
‖y − x‖2

Using the co-coercivity property of g, the following inequality holds

‖∇g(x)−∇g(y)‖2 ≤ (L−m)(∇g(x)−∇g(y))T(x− y)

which is equivalent to

‖∇f(x)−∇f(y)−m(x− y)‖2 ≤ (L−m)(∇f(x)−∇f(y)−mx+my)T(x− y).

One can verity that the above inequality directly leads to the desired conclusion.

2. For α = 1
L and ρ = 1 − m

L , we only need to show that we can find some non-negative λ to make the

matrix

[
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
negative semidefinite. Now we choose λ = 1

L2 . Then we

have [
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
−m2

L2
m
L2

m
L2 − 1

L2

]
=

1

L2

[
−m2 m
m −1

]
(18)

The right side is clearly negative semidefinite due to the fact that

[
a
b

]T [−m2 m
m −1

] [
a
b

]
= −(ma −

b)2 ≤ 0 for arbitrary (a, b). Therefore, the gradient method with α = 1
L converges as ‖xk − x∗‖ ≤(

1− m
L

)k ‖x0 − x∗‖.
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