SOLUTIONS HW 3

Problem 1

(a) Note that f has a unique global minimum at $x^{*}=0, \nabla f(x)=4 x^{3}$, and $\nabla^{2} f(x)=12 x^{2}$. Then for $x_{k} \neq 0$:

$$
x_{k+1}=x_{k}-\frac{\alpha\left(4 x_{k}\right)^{3}}{12 x_{k}^{2}}=\left(1-\frac{\alpha}{3}\right) x_{k} .
$$

Therefore, as long as $\left|1-\frac{\alpha}{3}\right|<1, x_{k}$ converges to $x^{*}=0$ as $k \rightarrow \infty$. The range of α can be found using $\left|1-\frac{\alpha}{3}\right|<1 \Rightarrow 0<\alpha<6$. Note that for $\alpha=3$, the method converges in one step.
For this range of α and any $x_{0} \in \mathbb{R}$, we can show

$$
x_{k}=\left(1-\frac{\alpha}{3}\right)^{k} x_{0}
$$

hence x_{k} converges to 0 geometrically, i.e., the method converges "linearly".
(b)

$$
\nabla f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}, \quad \quad \nabla^{2} f(x)=\frac{4 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}
$$

Substituting values in formula for Newton's method for $\alpha=1$, we get the desired expression.
Example code:

```
import numpy as np
alpha = 1
x = 1
n = 5
iterates = np.zeros(n)
for i in range(n):
    x = x - (np.exp (4*x) - 1)/ (4*np.exp (2*x ))
    iterates[i] = x
print(iterates)
```

For initialization $x_{0}=1$, iterates are:

$$
\left[\begin{array}{lllll}
-8.13430204 e-01 & 4.09402317 e-01 & -4.73049165 e-02 & 7.06028036 e-05 & -2.34633642 e-13
\end{array}\right] .
$$

For initialization $x_{0}=1.1$, iterates are:

$$
\left[\begin{array}{lllll}
-1.12855259 e+00 & 1.23413113 e+00 & -1.69516598 e+00 & 5.71536010 e+00 & -2.30213565 e+04
\end{array}\right]
$$

The iterates converges to $x^{*}=0$ with $x_{0}=1$ and diverges for $x_{0}=1.1$. Newton's method converges as long as the initial estimate is sufficiently close to x^{*}.
(c) Since the cost function is quadratic and strongly convex, the Newton's method converges in one step as we discussed in Lecture.

Problem 2

(a) For layer M, starting with the hint, and following steps similar to those in the lecture note:

$$
\begin{aligned}
\frac{\partial J}{\partial W_{i j}^{(M)}} & =\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(M)}[n]} \frac{\partial y_{i}^{(M)}[n]}{\partial W_{i j}^{(M)}} \\
& =\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(M)}[n]} \frac{\partial y_{i}^{(M)}[n]}{\partial x_{i}^{(M)}[n]} \frac{\partial x_{i}^{(M)}[n]}{\partial W_{i j}^{(M)}} \\
& =\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(M)}[n]} \sigma^{\prime}\left(x_{i}^{(M)}[n]\right) y_{j}^{(M-1)}[n]
\end{aligned}
$$

and

$$
\frac{\partial J}{\partial b_{i}^{(M)}}=\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(M)}[n]} \sigma^{\prime}\left(x_{i}^{(M)}[n]\right)
$$

For layers $M-1, \cdots, 1$, going backwards, we can again follow the steps in the lecture notes (with the additional summation over the datapoints) to obtain:

$$
\begin{aligned}
\frac{\partial J}{\partial W_{i j}^{(m)}} & =\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(m)}[n]} \sigma^{\prime}\left(x_{i}^{(m)}[n]\right) y_{j}^{(m-1)}[n] \\
\frac{\partial J}{\partial b_{i}^{(m)}} & =\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(m)}[n]} \sigma^{\prime}\left(x_{i}^{(m)}[n]\right)
\end{aligned}
$$

with

$$
\frac{\partial J}{\partial y_{i}^{(m)}[n]}=\sum_{k} \frac{\partial J}{\partial y_{k}^{(m+1)}[n]} \sigma^{\prime}\left(x_{k}^{(m+1)}[n]\right) W_{k i}^{(m+1)},
$$

where the summation is over the number of outputs of layer $m+1$.
(b) Note from part (a) that running the back-propagation algorithm directly on J results in the summation of independent terms obtained by running the algorithm on the loss corresponding to the individual data-points. Given a single computing machine, there is no computational advantage of running the algorithm directly on J.
The advantage of SGD: It is computationally fast as only a subset of the training set is processed at a time. For larger datasets, it requires less computation resources.

Problem 3

(a) True. Suppose $\mathcal{A}=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$. If $x_{1}, x_{2} \in \mathcal{A}$, for any $\lambda \in[0,1]$, we have $A\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=$ $\lambda A x_{1}+(1-\lambda) A x_{2}=b$. Therefore, $\lambda x_{1}+(1-\lambda) x_{2} \in \mathcal{A}$. \mathcal{A} is a convex set.
(b) False. If $f(x)=x^{2}$ and $r=1$, then the set $\left\{x \in R: x^{2}=1\right\}=\{1,-1\}$, which is clearly not convex.
(c) True. It suffices to show $f(x)=x^{\top} Q x$ is a convex function. Since Q is a positive semidefinite matrix, i.e., $Q \geq 0$, we have $\nabla^{2} f(x)=2 Q \geq 0$, which is positive semidefinite as well. Therefore, $f(x)$ is a convex function. Then the considered set is a convex set by using the results in Lecture 3 (page 8).
(d) True. Since $f(x)$ is μ strongly convex, we have:

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)+\frac{\mu}{2}\|y-x\|^{2}
$$

Minimizing the both sides of the above inequality with respect to y :

$$
\begin{aligned}
& \min \{\mathrm{LHS}\}=\min \{f(y)\}=f\left(x^{*}\right) \\
& \frac{\partial \mathrm{RHS}}{\partial y}=\nabla f(x)+\mu(y-x) \Rightarrow y^{*}=x-\frac{1}{\mu} \nabla f(x) \Rightarrow \min \{\mathrm{RHS}\}=f(x)-\frac{1}{2 \mu}\|\nabla f(x)\|^{2}
\end{aligned}
$$

Overall, we have $f\left(x^{*}\right) \geq f(x)-\frac{1}{2 \mu}\|\nabla f(x)\|^{2} \Rightarrow f(x)-f\left(x^{*}\right) \leq \frac{1}{2 \mu}\|\nabla f(x)\|^{2}$.

