
SOLUTIONS HW 3

Problem 1
(a) Note that f has a unique global minimum at x∗ = 0, ∇f(x) = 4x3, and ∇2f(x) = 12x2. Then for

xk 6= 0:

xk+1 = xk −
α(4xk)3

12x2
k

= (1− α

3 )xk.

Therefore, as long as |1 − α
3 | < 1, xk converges to x∗ = 0 as k → ∞. The range of α can be found

using |1− α
3 | < 1⇒ 0 < α < 6. Note that for α = 3, the method converges in one step.

For this range of α and any x0 ∈ R, we can show

xk = (1− α

3 )kx0,

hence xk converges to 0 geometrically, i.e., the method converges "linearly".

(b)

∇f(x) = ex − e−x

ex + e−x
, ∇2f(x) = 4e2x

(e2x + 1)2 .

Substituting values in formula for Newton’s method for α = 1, we get the desired expression.
Example code:

import numpy as np
alpha = 1
x = 1
n = 5
i t e r a t e s = np . z e ro s (n)
f o r i in range (n ) :

x = x − (np . exp (4∗x)−1)/(4∗np . exp (2∗x ) )
i t e r a t e s [ i ] = x

pr in t ( i t e r a t e s )

For initialization x0 = 1, iterates are:

[−8.13430204e − 01 4.09402317e − 01 −4.73049165e − 02 7.06028036e − 05 −2.34633642e − 13] .

For initialization x0 = 1.1, iterates are:

[−1.12855259e + 00 1.23413113e + 00 −1.69516598e + 00 5.71536010e + 00 −2.30213565e + 04] .

The iterates converges to x∗ = 0 with x0 = 1 and diverges for x0 = 1.1. Newton’s method converges
as long as the initial estimate is sufficiently close to x∗.

(c) Since the cost function is quadratic and strongly convex, the Newton’s method converges in one step
as we discussed in Lecture.
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Problem 2
(a) For layer M , starting with the hint, and following steps similar to those in the lecture note:

∂J

∂W
(M)
ij

=
N∑
n=1

∂J

∂y
(M)
i [n]

∂y
(M)
i [n]

∂W
(M)
ij

=
N∑
n=1

∂J

∂y
(M)
i [n]

∂y
(M)
i [n]

∂x
(M)
i [n]

∂x
(M)
i [n]

∂W
(M)
ij

=
N∑
n=1

∂J

∂y
(M)
i [n]

σ′(x(M)
i [n])y(M−1)

j [n]

and

∂J

∂b
(M)
i

=
N∑
n=1

∂J

∂y
(M)
i [n]

σ′(x(M)
i [n])

For layers M − 1, · · · , 1, going backwards, we can again follow the steps in the lecture notes (with the
additional summation over the datapoints) to obtain:

∂J

∂W
(m)
ij

=
N∑
n=1

∂J

∂y
(m)
i [n]

σ′(x(m)
i [n])y(m−1)

j [n]

∂J

∂b
(m)
i

=
N∑
n=1

∂J

∂y
(m)
i [n]

σ′(x(m)
i [n])

with
∂J

∂y
(m)
i [n]

=
∑
k

∂J

∂y
(m+1)
k [n]

σ′(x(m+1)
k [n])W (m+1)

ki ,

where the summation is over the number of outputs of layer m+ 1.

(b) Note from part (a) that running the back-propagation algorithm directly on J results in the summation
of independent terms obtained by running the algorithm on the loss corresponding to the individual
data-points. Given a single computing machine, there is no computational advantage of running the
algorithm directly on J .
The advantage of SGD: It is computationally fast as only a subset of the training set is processed at a
time. For larger datasets, it requires less computation resources.
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Problem 3
(a) True. Suppose A = {x ∈ Rn : Ax = b}. If x1, x2 ∈ A, for any λ ∈ [0, 1], we have A(λx1 + (1− λ)x2) =

λAx1 + (1− λ)Ax2 = b. Therefore, λx1 + (1− λ)x2 ∈ A. A is a convex set.

(b) False. If f(x) = x2 and r = 1, then the set {x ∈ R : x2 = 1} = {1,−1}, which is clearly not convex.

(c) True. It suffices to show f(x) = xTQx is a convex function. Since Q is a positive semidefinite matrix,
i.e., Q ≥ 0, we have ∇2f(x) = 2Q ≥ 0, which is positive semidefinite as well. Therefore, f(x) is a
convex function. Then the considered set is a convex set by using the results in Lecture 3 (page 8).

(d) True. Since f(x) is µ strongly convex, we have:

f(y) ≥ f(x) +∇f(x)T(y − x) + µ

2 ‖y − x‖
2.

Minimizing the both sides of the above inequality with respect to y:

min{LHS} = min{f(y)} = f(x∗)
∂RHS
∂y

= ∇f(x) + µ(y − x)⇒ y∗ = x− 1
µ
∇f(x)⇒ min{RHS} = f(x)− 1

2µ‖∇f(x)‖2

Overall, we have f(x∗) ≥ f(x)− 1
2µ‖∇f(x)‖2 ⇒ f(x)− f(x∗) ≤ 1

2µ‖∇f(x)‖2.
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