SOLUTIONS HW 3

Problem 1

(a)

Note that f has a unique global minimum at z* = 0, Vf(z) = 42, and V2f(z) = 122%. Then for
Tk 75 0:
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Therefore, as long as |1 — §| < 1, z; converges to z* = 0 as k — oo. The range of o can be found
using |1 — §] < 1=-0< a < 6. Note that for a = 3, the method converges in one step.

For this range of a and any zg € R, we can show
o

T = (1 — g)kifo,

hence zj, converges to 0 geometrically, i.e., the method converges "linearly".
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Substituting values in formula for Newton’s method for o = 1, we get the desired expression.
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Example code:

import numpy as np

alpha =1

x =1

n=>5

iterates = np.zeros(n)

for i in range(n):
x = x — (np.exp(4*xx)—1)/(4*np.exp(2xx))
iterates[i] = x

print (iterates)

For initialization x¢ = 1, iterates are:

[—8.13430204@ — 01 4.09402317e — 01 —4.73049165e — 02 7.06028036e — 05 —2.34633642¢ — 13] .
For initialization x¢ = 1.1, iterates are:

[—1.128552596 +00 1.23413113e+00 —1.69516598e 4+ 00 5.71536010e 400 —2.30213565¢e + 04] .

The iterates converges to z* = 0 with g = 1 and diverges for o = 1.1. Newton’s method converges
as long as the initial estimate is sufficiently close to z*.

Since the cost function is quadratic and strongly convex, the Newton’s method converges in one step
as we discussed in Lecture.



Problem 2

()

For layer M, starting with the hint, and following steps similar to those in the lecture note:
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For layers M —1,--- 1, going backwards, we can again follow the steps in the lecture notes (with the

additional summation over the datapoints) to obtain:
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where the summation is over the number of outputs of layer m + 1.

Note from part (a) that running the back-propagation algorithm directly on J results in the summation
of independent terms obtained by running the algorithm on the loss corresponding to the individual
data-points. Given a single computing machine, there is no computational advantage of running the
algorithm directly on J.

The advantage of SGD: It is computationally fast as only a subset of the training set is processed at a
time. For larger datasets, it requires less computation resources.



Problem 3

(a) True. Suppose A= {z € R" : Az =b}. If x1, 22 € A, for any A € [0, 1], we have A(Az1 + (1 — N)x2) =
Axy + (1 — N)Azg = b. Therefore, Az + (1 — M)z € A. A is a convex set.

(b) False. If f(z) = 22 and r = 1, then the set {z € R: 2% = 1} = {1, -1}, which is clearly not convex.

(c) True. It suffices to show f(z) = 2T Qx is a convex function. Since @ is a positive semidefinite matrix,
ie., @ > 0, we have V2f(z) = 2Q > 0, which is positive semidefinite as well. Therefore, f(z) is a
convex function. Then the considered set is a convex set by using the results in Lecture 3 (page 8).

(d) True. Since f(z) is p strongly convex, we have:
f4) = F@) + V@) (g —2) + Sy — %
Minimizing the both sides of the above inequality with respect to y:

min{LHS} = min{f(y)} = f(«")

ORHS .1 , B 1
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Overall, we have f(z*) > f(z) — 5, [Vf(2)I]* = f(z) — f(z*) < 5 V()]




