SOLUTIONS HW 4

1 Problem 1

The S is a closed convex set. The minimizer z* is the projection of 0 in §. Thus, in order to show that
x* = AT(AAT)=1b is the projection of 0 in S it suffices to show that

@ — 0 (z—2*)>0, Voes (1)

Indeed,
(@) (z —a*) = (b7 ((AAT) )T A)(x — AT(AAT)"'b)
= bT((AAT)*l)TAa: — bT((AAT)*l)TAAT(AAT)*lb

=0T ((AAT)Y DTy — T (AATY™HTh,  we used Az=b ®
=0
2 Problem 2
1. Let us consider a vector z such that 27 AA”T = 0. Multiplying by « on the right, we have
2T AATz = 0= ||2T A2 =0 (3)
Since the rows of A are linearly independent, we must have x = 0. Hence,
2T AAT =0=2=0 (4)

which implies that AA” is invertible.

2. In order to verify that 2* = 2 — AT(AAT)~1(Ax — b) is the project of 2 on & it suffices to show that
(z* —2)T(2 — 2*) > 0 for all z € S. Indeed,

(z* — )T (2= 2%)
=(zT — (Az - b)T((AAT) " HTA - 2T (2 — z + AT(AAT) Y (Az — b))
=(b— A2)T(AAT) DT Az + (Az — b)T((AAT) )T Az — (Az — b)T ((AAT) )T AAT(AAT) " (Az — 1)
=(b— A2)T((AAT) " HTb + (Az — )T ((AAT) M Az — (Az — b)T ((AAT) )T Az + (Az — b)T ((AAT)"H)TD
=0
(5)
3 Problem 3
1. The derivative of the Lagrangian is
VFf4+AVh=0=2r+11=0 (6)

This implies that 1 = ... =2, = —\/2 and Y ;. z; = 2. Hence, 2* = [2/n,...,2/n]T.

We can also check V2 L(z*,A\*) = 2] > 0. Hence z* is a local min. Since f is coercive, we know the
global min exists and the only local min z* is also the global min.
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2. The derivative of the Lagrangian is

Vi+AVh=0=14+X2z=0 (7)
This implies that 7y = ... = 2, = —1/(2)) and ||z]|> = 1. Hence, we have two stationary points
o = [1/v/n,...,1/y/n)T or o* = —[1/y/n,...,1//n]T. However, for z* = —[1/\/n,...,1//n]T, we

have
V2f(x*) + A*V2h(z*) = —v/nl <0

This is not a local min. For 2* = —[1/y/n,...,1/y/n]T, we have
V2f(x*) + N*V2h(z*) = /nl = 0

This is a local min. Since the feasible set is compact, we know the global min exists and this point will
also be the local min.

. The derivative of the Lagrangian is

Vf+AVh=0=2z+2\Qz =0

= (Q—pl)z =0, where p=—1/A (8)

We observe that p stands for an eigenvalue and thus x* is the corresponding eigenvector. Also, if we
multiply (8) on the left by 27 we have

2Pz +2Qz) =0= |z]? + MeT Qe =0= |z = A= 1/p (9)

Hence ||z*||* = 1/p in order to minimize ||x||? the z* has to be the eigenvector which corresponds
to the maximum eigenvalue of @ say u* such that (z*)TQx* = 1. For a normalized eigenvector u
which corresponds to u*, we have uT Qu = p*. Thus, * = fu//p*. If the multiplicity of the largest
eigenvalue of ) is 1, then it is straightforward to use the second-order sufficient condition to show that
for yT'Vh(z*) = cyTu = 0, we have

* * 2
y  (V2f(@") + AV2h(a®))y = y" (21 — =@y
In general, we know @ < p*I. More importantly, if y is orthogonal to the eigenvector u, then we have
2
y'(2I - EQ)y > 0.

The second-order sufficient condition holds. Hence x* is the local min. Since the feasible set is compact,
the global min exists and we can verify it is achieved by the above solution.

More comments: For this problem, it is OK to assume the multiplicity of the largest eigenvalue of
Q@ is 1. In general, the multiplicity of the largest eigenvalue of () is larger than 1. However, if y is
orthogonal to the eigenspace for u*, we still have

2
yT(2I - EQ)y > 0.

Then a generalized version of the second-order sufficient condition can be applied to guarantee local
optimality. The only difference is that now z* forms a set, and the y vector in the sufficient condition
should be taken to be orthogonal to the eigenspace of p*.

Problem 4

First, we note that Vh = [2,1] # 0, thus the regularity conditions are satisfied. The derivative of the
Lagrangian is

VF+AVh=0=[2—x9, 1 —21]T + A2, 11T =0 (10)



which implies that 2 — z9 = 2(1 — z1) = 2x1 = x2. The 221 = x5 together with the constraint 2z + zo = 2
implies that z* = [0.5,1]7.

To show that this is the global min of the original problem, we can substitute zo = 2 — 2z; into f and
obtain f =2z + (1 — 21)(2 — 221) = 2 — 221 + 223 = 2(z; — 0.5)? + 1.5 > 1.5. Therefore, z* does lead to
the global minimum value.

It is also OK to use the second-order sufficient condition and the corollary to Weierstrass’ Theorem to
show x* is the global min. We have

170 -1
2 (1 0 )

Suppose y " Vh(z*) = 2y; +y2 = 0, i.e. y2 = —2y;. Then we have

VieL(z", ) = V2 f(a") =

y' Vi L(a" Ny = 247 > 0

This guarantees z* is a local min. On the feasible set, we have f = 23:% — 221 + 2 which is coercive. Hence
by the corollary to Weierstrass’ Theorem, the global min exists and z* is the global min. Notice that f is
not coercive on R2. It is only coercive when we enforce the feasibility condition 221 + x5 = 2.

5 Problem 5

1.
_ _ _ . T 2,  (4—sin(z) 0
Vf=[4(z1 — 1) + cos(z1), 8(xa — 2) +sin(zz)]", V°f= < 0 § + cos(s) (11)
Since 4 — sin(z1) > 0 and 8 + cos(x2) > 0 the V2f is positive definite and thus f is convex.

2. The projected Newton iteration is
Xp1 =[x — (V2 f(xi)) 7V f (x0)]° (12)

If (z1,22) ¢ S then we find the closest number in S, i.e.

S _
ry = —1, z; < —1
S _
2 =1, x; > 1 (13)
r$ =2y, otherwise
for i € {1, 2}.
3. The algorithm converges
fix1, x2) vs number of iterations.
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