1 Problem 1

The S is a closed convex set. The minimizer x^* is the projection of 0 in S. Thus, in order to show that $x^* = A^T (AA^T)^{-1}b$ is the projection of 0 in S it suffices to show that

$$(x^* - 0)^T (x - x^*) \ge 0, \quad \forall x \in \mathcal{S}$$
(1)

Indeed,

$$(x^{*})^{T}(x - x^{*}) = (b^{T}((AA^{T})^{-1})^{T}A)(x - A^{T}(AA^{T})^{-1}b)$$

= $b^{T}((AA^{T})^{-1})^{T}Ax - b^{T}((AA^{T})^{-1})^{T}AA^{T}(AA^{T})^{-1}b$
= $b^{T}((AA^{T})^{-1})^{T}b - b^{T}((AA^{T})^{-1})^{T}b$, we used $Ax=b$
= 0 (2)

2 Problem 2

1. Let us consider a vector x such that $x^T A A^T = 0$. Multiplying by x on the right, we have

$$x^T A A^T x = 0 \Rightarrow \|x^T A\|^2 = 0 \tag{3}$$

Since the rows of A are linearly independent, we must have x = 0. Hence,

$$x^T A A^T = 0 \Rightarrow x = 0 \tag{4}$$

which implies that AA^T is invertible.

2. In order to verify that $z^* = x - A^T (AA^T)^{-1} (Ax - b)$ is the project of x on S it suffices to show that $(z^* - x)^T (z - z^*) \ge 0$ for all $z \in S$. Indeed,

$$(z^* - x)^T (z - z^*)$$

$$= (x^T - (Ax - b)^T ((AA^T)^{-1})^T A - x^T)(z - x + A^T (AA^T)^{-1} (Ax - b))$$

$$= (b - Ax)^T ((AA^T)^{-1})^T Az + (Ax - b)^T ((AA^T)^{-1})^T Ax - (Ax - b)^T ((AA^T)^{-1})^T AA^T (AA^T)^{-1} (Ax - b)$$

$$= (b - Ax)^T ((AA^T)^{-1})^T b + (Ax - b)^T ((AA^T)^{-1})^T Ax - (Ax - b)^T ((AA^T)^{-1})^T Ax + (Ax - b)^T ((AA^T)^{-1})^T b$$

$$= 0$$
(5)

3 Problem 3

1. The derivative of the Lagrangian is

$$\nabla f + \lambda \nabla h = 0 \Rightarrow 2x + \lambda \mathbf{1} = 0 \tag{6}$$

This implies that $x_1 = \ldots = x_n = -\lambda/2$ and $\sum_{i=1}^n x_i = 2$. Hence, $x^* = [2/n, \ldots, 2/n]^T$. We can also check $\nabla_{xx}^2 L(x^*, \lambda^*) = 2I \succ 0$. Hence x^* is a local min. Since f is coercive, we know the

We can also check $\bigvee_{xx}^2 L(x^*, \lambda^*) = 2I \succ 0$. Hence x^* is a local min. Since f is coercive, we know the global min exists and the only local min x^* is also the global min.

2. The derivative of the Lagrangian is

$$\nabla f + \lambda \nabla h = 0 \Rightarrow \mathbf{1} + \lambda 2x = 0 \tag{7}$$

This implies that $x_1 = \ldots = x_n = -1/(2\lambda)$ and $||x||^2 = 1$. Hence, we have two stationary points $x^* = [1/\sqrt{n}, \ldots, 1/\sqrt{n}]^T$ or $x^* = -[1/\sqrt{n}, \ldots, 1/\sqrt{n}]^T$. However, for $x^* = -[1/\sqrt{n}, \ldots, 1/\sqrt{n}]^T$, we have

$$\nabla^2 f(x^*) + \lambda^* \nabla^2 h(x^*) = -\sqrt{n}I \prec 0$$

This is not a local min. For $x^* = -[1/\sqrt{n}, \dots, 1/\sqrt{n}]^T$, we have

$$\nabla^2 f(x^*) + \lambda^* \nabla^2 h(x^*) = \sqrt{n} I \succ 0$$

This is a local min. Since the feasible set is compact, we know the global min exists and this point will also be the local min.

3. The derivative of the Lagrangian is

$$\nabla f + \lambda \nabla h = 0 \Rightarrow 2x + 2\lambda Qx = 0$$

$$\Rightarrow (Q - \mu I)x = 0, \quad \text{where } \mu = -1/\lambda$$
(8)

We observe that μ stands for an eigenvalue and thus x^* is the corresponding eigenvector. Also, if we multiply (8) on the left by x^T we have

$$x^{T}(x + \lambda Qx) = 0 \Rightarrow ||x||^{2} + \lambda x^{T}Qx = 0 \Rightarrow ||x||^{2} = -\lambda = 1/\mu$$
(9)

Hence $||x^*||^2 = 1/\mu$ in order to minimize $||x||^2$ the x^* has to be the eigenvector which corresponds to the maximum eigenvalue of Q say μ^* such that $(x^*)^T Q x^* = 1$. For a normalized eigenvector uwhich corresponds to μ^* , we have $u^T Q u = \mu^*$. Thus, $x^* = \pm u/\sqrt{\mu^*}$. If the multiplicity of the largest eigenvalue of Q is 1, then it is straightforward to use the second-order sufficient condition to show that for $y^T \nabla h(x^*) = cy^T u = 0$, we have

$$y^{T}(\nabla^{2}f(x^{*}) + \lambda \nabla^{2}h(x^{*}))y = y^{T}(2I - \frac{2}{\mu^{*}}Q)y$$

In general, we know $Q \leq \mu^* I$. More importantly, if y is orthogonal to the eigenvector u, then we have

$$y^T (2I - \frac{2}{\mu^*}Q)y > 0.$$

The second-order sufficient condition holds. Hence x^* is the local min. Since the feasible set is compact, the global min exists and we can verify it is achieved by the above solution.

More comments: For this problem, it is OK to assume the multiplicity of the largest eigenvalue of Q is 1. In general, the multiplicity of the largest eigenvalue of Q is larger than 1. However, if y is orthogonal to the eigenspace for μ^* , we still have

$$y^T (2I - \frac{2}{\mu^*}Q)y > 0.$$

Then a generalized version of the second-order sufficient condition can be applied to guarantee local optimality. The only difference is that now x^* forms a set, and the y vector in the sufficient condition should be taken to be orthogonal to the eigenspace of μ^* .

4 Problem 4

First, we note that $\nabla h = [2,1] \neq 0$, thus the regularity conditions are satisfied. The derivative of the Lagrangian is

$$\nabla f + \lambda \nabla h = 0 \Rightarrow [2 - x_2, 1 - x_1]^T + \lambda [2, 1]^T = 0$$
 (10)

which implies that $2 - x_2 = 2(1 - x_1) \Rightarrow 2x_1 = x_2$. The $2x_1 = x_2$ together with the constraint $2x_1 + x_2 = 2$ implies that $x^* = [0.5, 1]^T$.

To show that this is the global min of the original problem, we can substitute $x_2 = 2 - 2x_1$ into f and obtain $f = 2x_1 + (1 - x_1)(2 - 2x_1) = 2 - 2x_1 + 2x_1^2 = 2(x_1 - 0.5)^2 + 1.5 \ge 1.5$. Therefore, x^* does lead to the global minimum value.

It is also OK to use the second-order sufficient condition and the corollary to Weierstrass' Theorem to show x^* is the global min. We have

$$\nabla^2_{xx}L(x^*,\lambda) = \nabla^2 f(x^*) = \frac{1}{2} \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix}$$

Suppose $y^{\top} \nabla h(x^*) = 2y_1 + y_2 = 0$, i.e. $y_2 = -2y_1$. Then we have

$$y^\top \nabla^2_{xx} L(x^*,\lambda) y = 2y_1^2 > 0$$

This guarantees x^* is a local min. On the feasible set, we have $f = 2x_1^2 - 2x_1 + 2$ which is coercive. Hence by the corollary to Weierstrass' Theorem, the global min exists and x^* is the global min. Notice that f is not coercive on \mathbf{R}^2 . It is only coercive when we enforce the feasibility condition $2x_1 + x_2 = 2$.

5 Problem 5

1.

$$\nabla f = [4(x_1 - 1) + \cos(x_1), 8(x_2 - 2) + \sin(x_2)]^T, \quad \nabla^2 f = \begin{pmatrix} 4 - \sin(x_1) & 0\\ 0 & 8 + \cos(x_2) \end{pmatrix}$$
(11)

Since $4 - \sin(x_1) > 0$ and $8 + \cos(x_2) > 0$ the $\nabla^2 f$ is positive definite and thus f is convex.

2. The projected Newton iteration is

$$\mathbf{x}_{k+1} = [\mathbf{x}_k - \alpha (\nabla^2 f(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k)]^{\mathcal{S}}$$
(12)

If $(x_1, x_2) \notin S$ then we find the closest number in S, i.e.

$$\begin{cases} x_i^{\mathcal{S}} = -1, & x_i < -1\\ x_i^{\mathcal{S}} = 1, & x_i > 1\\ x_i^{\mathcal{S}} = x_i, & \text{otherwise} \end{cases}$$
(13)

for $i \in \{1, 2\}$.

3. The algorithm converges

