SOLUTIONS HW 4

1 Problem 1

The \mathcal{S} is a closed convex set. The minimizer x^{*} is the projection of 0 in \mathcal{S}. Thus, in order to show that $x^{*}=A^{T}\left(A A^{T}\right)^{-1} b$ is the projection of 0 in \mathcal{S} it suffices to show that

$$
\begin{equation*}
\left(x^{*}-0\right)^{T}\left(x-x^{*}\right) \geq 0, \quad \forall x \in \mathcal{S} \tag{1}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\left(x^{*}\right)^{T}\left(x-x^{*}\right) & =\left(b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A\right)\left(x-A^{T}\left(A A^{T}\right)^{-1} b\right) \\
& =b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x-b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A A^{T}\left(A A^{T}\right)^{-1} b \\
& =b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b-b^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b, \quad \text { we used } A x=b \tag{2}\\
& =0
\end{align*}
$$

2 Problem 2

1. Let us consider a vector x such that $x^{T} A A^{T}=0$. Multiplying by x on the right, we have

$$
\begin{equation*}
x^{T} A A^{T} x=0 \Rightarrow\left\|x^{T} A\right\|^{2}=0 \tag{3}
\end{equation*}
$$

Since the rows of A are linearly independent, we must have $x=0$. Hence,

$$
\begin{equation*}
x^{T} A A^{T}=0 \Rightarrow x=0 \tag{4}
\end{equation*}
$$

which implies that $A A^{T}$ is invertible.
2. In order to verify that $z^{*}=x-A^{T}\left(A A^{T}\right)^{-1}(A x-b)$ is the project of x on \mathcal{S} it suffices to show that $\left(z^{*}-x\right)^{T}\left(z-z^{*}\right) \geq 0$ for all $z \in \mathcal{S}$. Indeed,

$$
\begin{align*}
& \left(z^{*}-x\right)^{T}\left(z-z^{*}\right) \\
= & \left(x^{T}-(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A-x^{T}\right)\left(z-x+A^{T}\left(A A^{T}\right)^{-1}(A x-b)\right) \\
= & (b-A x)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A z+(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x-(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A A^{T}\left(A A^{T}\right)^{-1}(A x-b) \\
= & (b-A x)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b+(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x-(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} A x+(A x-b)^{T}\left(\left(A A^{T}\right)^{-1}\right)^{T} b \\
= & 0 \tag{5}
\end{align*}
$$

3 Problem 3

1. The derivative of the Lagrangian is

$$
\begin{equation*}
\nabla f+\lambda \nabla h=0 \Rightarrow 2 x+\lambda \mathbf{1}=0 \tag{6}
\end{equation*}
$$

This implies that $x_{1}=\ldots=x_{n}=-\lambda / 2$ and $\sum_{i=1}^{n} x_{i}=2$. Hence, $x^{*}=[2 / n, \ldots, 2 / n]^{T}$.
We can also check $\nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right)=2 I \succ 0$. Hence x^{*} is a local min. Since f is coercive, we know the global min exists and the only local min x^{*} is also the global min.
2. The derivative of the Lagrangian is

$$
\begin{equation*}
\nabla f+\lambda \nabla h=0 \Rightarrow \mathbf{1}+\lambda 2 x=0 \tag{7}
\end{equation*}
$$

This implies that $x_{1}=\ldots=x_{n}=-1 /(2 \lambda)$ and $\|x\|^{2}=1$. Hence, we have two stationary points $x^{*}=[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$ or $x^{*}=-[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$. However, for $x^{*}=-[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$, we have

$$
\nabla^{2} f\left(x^{*}\right)+\lambda^{*} \nabla^{2} h\left(x^{*}\right)=-\sqrt{n} I \prec 0
$$

This is not a local min. For $x^{*}=-[1 / \sqrt{n}, \ldots, 1 / \sqrt{n}]^{T}$, we have

$$
\nabla^{2} f\left(x^{*}\right)+\lambda^{*} \nabla^{2} h\left(x^{*}\right)=\sqrt{n} I \succ 0
$$

This is a local min. Since the feasible set is compact, we know the global min exists and this point will also be the local min.
3. The derivative of the Lagrangian is

$$
\begin{align*}
\nabla f+\lambda \nabla h=0 & \Rightarrow 2 x+2 \lambda Q x=0 \\
& \Rightarrow(Q-\mu I) x=0, \quad \text { where } \mu=-1 / \lambda \tag{8}
\end{align*}
$$

We observe that μ stands for an eigenvalue and thus x^{*} is the corresponding eigenvector. Also, if we multiply (8) on the left by x^{T} we have

$$
\begin{equation*}
x^{T}(x+\lambda Q x)=0 \Rightarrow\|x\|^{2}+\lambda x^{T} Q x=0 \Rightarrow\|x\|^{2}=-\lambda=1 / \mu \tag{9}
\end{equation*}
$$

Hence $\left\|x^{*}\right\|^{2}=1 / \mu$ in order to minimize $\|x\|^{2}$ the x^{*} has to be the eigenvector which corresponds to the maximum eigenvalue of Q say μ^{*} such that $\left(x^{*}\right)^{T} Q x^{*}=1$. For a normalized eigenvector u which corresponds to μ^{*}, we have $u^{T} Q u=\mu^{*}$. Thus, $x^{*}= \pm u / \sqrt{\mu^{*}}$. If the multiplicity of the largest eigenvalue of Q is 1 , then it is straightforward to use the second-order sufficient condition to show that for $y^{T} \nabla h\left(x^{*}\right)=c y^{T} u=0$, we have

$$
y^{T}\left(\nabla^{2} f\left(x^{*}\right)+\lambda \nabla^{2} h\left(x^{*}\right)\right) y=y^{T}\left(2 I-\frac{2}{\mu^{*}} Q\right) y
$$

In general, we know $Q \preceq \mu^{*} I$. More importantly, if y is orthogonal to the eigenvector u, then we have

$$
y^{T}\left(2 I-\frac{2}{\mu^{*}} Q\right) y>0 .
$$

The second-order sufficient condition holds. Hence x^{*} is the local min. Since the feasible set is compact, the global min exists and we can verify it is achieved by the above solution.
More comments: For this problem, it is OK to assume the multiplicity of the largest eigenvalue of Q is 1 . In general, the multiplicity of the largest eigenvalue of Q is larger than 1 . However, if y is orthogonal to the eigenspace for μ^{*}, we still have

$$
y^{T}\left(2 I-\frac{2}{\mu^{*}} Q\right) y>0 .
$$

Then a generalized version of the second-order sufficient condition can be applied to guarantee local optimality. The only difference is that now x^{*} forms a set, and the y vector in the sufficient condition should be taken to be orthogonal to the eigenspace of μ^{*}.

4 Problem 4

First, we note that $\nabla h=[2,1] \neq 0$, thus the regularity conditions are satisfied. The derivative of the Lagrangian is

$$
\begin{equation*}
\nabla f+\lambda \nabla h=0 \Rightarrow\left[2-x_{2}, 1-x_{1}\right]^{T}+\lambda[2,1]^{T}=0 \tag{10}
\end{equation*}
$$

which implies that $2-x_{2}=2\left(1-x_{1}\right) \Rightarrow 2 x_{1}=x_{2}$. The $2 x_{1}=x_{2}$ together with the constraint $2 x_{1}+x_{2}=2$ implies that $x^{*}=[0.5,1]^{T}$.

To show that this is the global min of the original problem, we can substitute $x_{2}=2-2 x_{1}$ into f and obtain $f=2 x_{1}+\left(1-x_{1}\right)\left(2-2 x_{1}\right)=2-2 x_{1}+2 x_{1}^{2}=2\left(x_{1}-0.5\right)^{2}+1.5 \geq 1.5$. Therefore, x^{*} does lead to the global minimum value.

It is also OK to use the second-order sufficient condition and the corollary to Weierstrass' Theorem to show x^{*} is the global min. We have

$$
\nabla_{x x}^{2} L\left(x^{*}, \lambda\right)=\nabla^{2} f\left(x^{*}\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Suppose $y^{\top} \nabla h\left(x^{*}\right)=2 y_{1}+y_{2}=0$, i.e. $y_{2}=-2 y_{1}$. Then we have

$$
y^{\top} \nabla_{x x}^{2} L\left(x^{*}, \lambda\right) y=2 y_{1}^{2}>0
$$

This guarantees x^{*} is a local min. On the feasible set, we have $f=2 x_{1}^{2}-2 x_{1}+2$ which is coercive. Hence by the corollary to Weierstrass' Theorem, the global min exists and x^{*} is the global min. Notice that f is not coercive on \mathbf{R}^{2}. It is only coercive when we enforce the feasibility condition $2 x_{1}+x_{2}=2$.

5 Problem 5

1.

$$
\nabla f=\left[4\left(x_{1}-1\right)+\cos \left(x_{1}\right), 8\left(x_{2}-2\right)+\sin \left(x_{2}\right)\right]^{T}, \quad \nabla^{2} f=\left(\begin{array}{cc}
4-\sin \left(x_{1}\right) & 0 \tag{11}\\
0 & 8+\cos \left(x_{2}\right)
\end{array}\right)
$$

Since $4-\sin \left(x_{1}\right)>0$ and $8+\cos \left(x_{2}\right)>0$ the $\nabla^{2} f$ is positive definite and thus f is convex.
2. The projected Newton iteration is

$$
\begin{equation*}
\mathbf{x}_{k+1}=\left[\mathbf{x}_{k}-\alpha\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)\right]^{\mathcal{S}} \tag{12}
\end{equation*}
$$

If $\left(x_{1}, x_{2}\right) \notin \mathcal{S}$ then we find the closest number in \mathcal{S}, i.e.

$$
\begin{cases}x_{i}^{\mathcal{S}}=-1, & x_{i}<-1 \tag{13}\\ x_{i}^{\mathcal{S}}=1, & x_{i}>1 \\ x_{i}^{\mathcal{S}}=x_{i}, & \text { otherwise }\end{cases}
$$

for $i \in\{1,2\}$.
3. The algorithm converges

