
SOLUTIONS HW 5

1 Problem 1

We set
f(x1, x2) := 2x21 + 2x1x2 + x22 − 10x1 − 10x2

g1(x1, x2) := x21 + x22 − 5, g2(x1, x2) := 3x1 + x2 − 6
(1)

The constraints set is closed and bounded. The KKT first-order necessary conditions are

∇f(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) = 0

µ1 ≥ 0, µ2 ≥ 0, g1(x∗) ≤ 0, g2(x∗) ≤ 0

µ1g1(x∗) = 0, µ2g2(x∗) = 0

(2)

where x∗ is assumed to be regular.

1. If g1, g2 are active then
∇f(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) = 0

g1(x∗) = 0, g2(x∗) = 0
(3)

and ∇g1, ∇g2 are linearly independent. Thus, we obtain the following solutions

x∗ = [2.2, −0.5], µ1 = −2.4, µ2 = 4.2

or

x∗ = [1.4, 1.7], µ1 = 1.4, µ2 = −1.0

(4)

Both solutions are infeasible because in the first one µ1 < 0 and in the second one µ2 < 0.

2. If g1, g2 are inactive then µ1 = µ2 = 0 and as a result ∇f(x∗) = 0, which implies that x∗ = [0, 5].
However, the solution does not satisfy g1(x∗) ≤ 0.

3. If g1 is inactive and g2 is active then µ1 = 0 and

∇f(x∗) + µ2∇g2(x∗) = 0, g2(x∗) = 0 (5)

The solution is x∗ = [0.4, 4.8] and µ2 = −0.4 < 0. Since µ2 < 0, the solution is infeasible.

4. If g1 is active and g2 is inactive then µ2 = 0 and

∇f(x∗) + µ1∇g1(x∗) = 0, g1(x∗) = 0 (6)

The solution is x∗ = [1, 2] and µ1 = 1 > 0. The solution is regular and satisfies the constraints.

For the case 4) which is the only one acceptable, we have µ1 > 0 and

∇2f(x∗) + µ1∇2g1(x∗) =

(
6 2
2 4

)
(7)

is positive definite. So, by sufficient conditions of KKT we know that the solution is a local minimum.
It is straightforward to check that the feasible set is compact, and hence the Weierstrass theorem can be

used to show the existence of the global minimum on this feasible set. Therefore, the only KKT point is the
global min in this case.
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2 Problem 2

We set
f(x1, x2) := x21 + x22 − 6x1 − 14x2

g1(x1, x2) := x1 + x2 − 2, g2(x1, x2) := 2x1 + x2 − 3
(8)

The KKT first-order necessary conditions are

∇f(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) = 0

µ1 ≥ 0, µ2 ≥ 0, g1(x∗) ≤ 0, g2(x∗) ≤ 0

µ1g1(x∗) = 0, µ2g2(x∗) = 0

(9)

1. If g1, g2 are active then
∇f(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) = 0

g1(x∗) = 0, g2(x∗) = 0
(10)

The solution is x∗ = [1, 1], µ1 = 20, µ2 = −8. Since µ2 < 0 the solution is not a KKT point.

2. If g1, g2 are inactive then µ1 = µ2 = 0 and as a result ∇f(x∗) = 0, which implies that x∗ = [3, 7].
However, this does not satisfy g1(x∗) ≤ 0. Again, it is not a KKT point.

3. If g1 is inactive and g2 is active then µ1 = 0 and

∇f(x∗) + µ2∇g2(x∗) = 0, g2(x∗) = 0 (11)

The solution is x∗ = [−1, 5] and µ2 = 4. However, this does not satisfy g1(x∗) ≤ 0.

4. If g1 is active and g2 is inactive then µ2 = 0 and

∇f(x∗) + µ1∇g1(x∗) = 0, g1(x∗) = 0 (12)

The solution is x∗ = [−1, 3] and µ1 = 8, which is regular and satisfies the constraints.

The case 4) is the only acceptable case. Since f is convex and g1, g2 are convex, we can use the general
sufficiency condition to show that x∗ = [−1, 3] is a global min.

3 Problem 3

1. We observe that for all i < n if xi = 0 the log(xi) is undefined. Thus, xi ≥ 0 is inactive.

2. If xi + xn < 1 for some xi > 0 then by updating xi to 1 − xn we have − log(1 − xn) < − log(xi) and
we can further decrease f . Thus, xi + xn ≤ 1 must be active. (It is also OK to show this using the
KKT condition.)

We set

f(x1, .., xn) := − log(1 + xn)−
n−1∑
i=1

log(xi)

gi(xi, xn) := xi + xn − 1, for i < n, gn(xn) := −xn

(13)

We examine whether xn ≥ 0 is active or not. The KKT first-order necessary conditions are

∇f +

n∑
i=1

µi∇gi = 0

µi ≥ 0, µigi(x
∗) = 0

gi(x
∗) = 0 ∀i < n

gn(x∗) ≤ 0

(14)
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1. If xn ≥ 0 is inactive then µn = 0. The system (14) reduces to

−1/xi + µi = 0, for i < n, −1/(1 + xn) +

n∑
i=1

µi = 0

xi + xn − 1 = 0, for i < n,

(15)

The solution is xi = (2n − 2)/n for i < n and xn = (2 − n)/n. For n = 2, this gives xn = 0, which
contradicts the assumption that xn ≥ 0 is inactive. For n > 2, xn < 0 and this is not a feasible
solution.

2. If xn ≥ 0 is active then xn = 0 and xi = 1 for i < n. Also (14) reduces to

−1/xi + µi = 0, for i < n, −1/(1 + xn) +

n−1∑
i=1

µi + µn = 0 (16)

which implies that µi = 1 for i < n and µn = n− 2.

The case 2) is the only one acceptable. The constraints xn > −1 and xi > 0 for i < n, they define a
convex set. Also, f , gi and ∇f +

∑n
i=1 µi∇gi are convex. Therefore, by the general sufficiency condition,

x∗ = [1, .., 1, 0] is a global minimum.

4 Problem 4

We observe that we want to minimize the sum of two squares x2 and y2, under the constraints x ≥ 2 and
y ≥ −1. Therefore, the [2, 0] is the global minimum since x2 + y2 is convex. It is also OK to solve this global
min from the KKT condition.

In order to apply the barrier method we set

fk := x2 + y2 − εk ln(x− 2)− εk ln(y + 1) (17)

and we want to minimize fk under the constraints x ≥ 2 and y ≥ −1. We have

∇fk =

[
2x− εk

x− 2
, 2y − εk

y + 1

]
(18)

and

∇2fk =

(
2 + εk/(x− 2)2 0

0 2 + εk/(y + 1)2

)
(19)

which is positive definite. Thus, [xk, yk] is the solution of ∇fk = 0 under the constraint xk ≥ 2 and yk ≥ −1,
which is [

2 +
√

4 + 2εk
2

,
−1 +

√
1 + 2εk

2

]
(20)

Notice when setting 2x − εk
x−2 = 0, you have two solutions x = 2+

√
4+2εk
2 or x = 2−

√
4+2εk
2 . Only the first

one satisfies x ≥ 2. Hence we have to choose the first one as our solution. Similarly, we can rule out the

negative solution for y, and yk has to be equal to −1+
√
1+2εk
2 . As k →∞, εk → 0, and [xk, yk]→ [2, 0] where

the limit is the minimizer.

5 Problem 5

We solve the constraint with respect to x, i.e. y = 4− x and we replace in the minimization function. Then
we minimize the quadratic function x2 + (4− x)2. The global minimum is [2, 2]. It is also OK to solve the
optimal point using the Lagrange multiplier theorem.
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In order to apply the quadratic penalty method we set

fk := x2 + y2 + ck(x+ y − 4)2 (21)

and we have
∇fk = [2x+ 2ck(x+ y − 4), 2y + 2ck(x+ y − 4)] (22)

and

∇2fk =

(
2(1 + ck) 2ck

2ck 2(1 + ck)

)
(23)

which is PD. Thus, [xk, yk] is the solution of ∇fk = 0, i.e. [xk, yk] =
[

4ck
2ck+1 ,

4ck
2ck+1

]
. As k → ∞, ck → ∞

and [xk, yk]→ [2, 2] where the limit is the minimizer.
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