
SOLUTIONS HW 6

1 Problem 1

For any z ∈ Z, we have:
g(y, z) ≤ max

y∈Y
g(y, z).

Next, we minimize both sides over z ∈ Z, and the inequality still holds

min
z∈Z

g(y, z) ≤ min
z∈Z

max
y∈Y

g(y, z).

The left side of the above inequality is a function of y, and the right side is a constant upper bound for the
left side over all y. Therefore, the maximum of the left side over y should still be upper bounded by the
constant on the right side. Hence we have

max
y∈Y

min
z∈Z

g(y, z) ≤ min
z∈Z

max
y∈Y

g(y, z).

2 Problem 2

The original problem is equivalent to

minimize cTx

subject to Ax− b ≤ 0,

where x =

[
x1
x2

]
, c =

[
1
1

]
, A =

−1 −2
3 1
−1 1

, and b =

−1
5
8

. To find the dual, for µ =

µ1

µ2

µ3

 ≥ 0, we calculate

D(µ) as:

D(µ) = min
x∈R2

cTx+ µT(Ax− b)

= min
x∈R2

(cT + µTA)x− µTb

=

{
−∞ if cT + µTA 6= 0

−µTb if cT + µTA = 0.

Notice that cT + µTA = 0 is equivalent to ATµ = −c. Therefore, the dual problem is:

maximize − µTb

subject to ATµ = −c, µ ≥ 0.

To verify the strong duality, notice that the solution for the primal problem is given by x = (−5, 3),
and the optimal value for the primal problem is −2. For the dual problem, the optimal point is given by
µ = (2

3 , 0,
1
3 ), and the maximum value is −µTb = −2. Therefore, the primal and dual problems have the

same solution. The strong duality holds.
Another way to verify strong duality is to use the Slater’s condition. For linear programming, finding a

strictly feasible point for the primal problem (e.g. x =
[
1 1

]T
) does guarantee the strong duality to hold.
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3 Problem 3

The Lagrangian of the problem is L(x, µ) = xTQx+ µT(Ax− b). Thus the Lagrangian dual function is:

D(µ) = min
x
L(x, µ)

= min
x
xTQx+ µT(Ax− b)

= min
x
xTQx+ µTAx− µTb.

Since Q is positive definite, we can just take the derivative of L(x, µ) with respect to x and set it equal to
0. Then we obtain x = − 1

2Q
−1ATµ, which leads to:

D(µ) = −1

4
µTAQ−1ATµ− µTb.

Therefore, the dual problem is:

maximize − 1

4
µTAQ−1ATµ− µTb

4 Problem 4

Let x̄ be a limit point of {x(k)} given by

x̄ = min
k→∞,k∈K

x(k).

Assuming that minh(x)=0 f(x) = f∗ exists, then we have:

f∗ = min
h(x)=0

f(x)

= min
h(x)=0

f(x) + λTh(x) + ck‖h(x)‖2

≥ min f(x) + λTh(x) + ck‖h(x)‖2

= f(x(k)) + λTh(x(k)) + ck‖h(x(k))‖2.

This implies that

ck‖h(x(k))‖2 + λTh(x(k)) ≤ f∗ − f(x(k))

⇒ ck‖h(x(k))‖2 − ‖λ‖‖h(x(k))‖ ≤ f∗ − f(x(k))

⇒ −‖λ‖‖h(x(k))‖ ≤ f∗ − f(x(k)), (1)

where the second step applies Cauchy–Schwarz inequality. By continuity of f , we have limk→∞ f(x(k)) =
f(x̄). Thus as k →∞ , f∗ − f(x(k)) goes to f∗ − f(x̄) which is finite. Since ck →∞ as k →∞, we get

lim
k→∞,k∈K

‖h(x(k))‖ = 0.

By continuity of ‖h(x)‖, we get
lim

k→∞,k∈K
‖h(x(k))‖ = ‖h(x̄)‖ = 0.

Taking limit as k →∞, k ∈ K in (1), we get

f∗ − f(x̄) ≥ 0.

But x̄ satisfies h(x̄) = 0 and so f(x̄) ≥ f∗. Hence, every limit point is a global minimum.

2



5 Problem 5

(a)

g is a subgradient of f at x

⇐⇒ f(y) ≥ f(x) + gT(y − x), ∀ y ∈ Rn

⇐⇒ af(y) ≥ af(x) + agT(y − x), ∀ y ∈ Rn, a > 0

⇐⇒ ag is a subgradient of af at x.

(b) If g1 is a subgradient of f1 and g2 is a subgradient of f2 at x, then

f1(y) ≥ f1(x) + gT1 (y − x), ∀ y ∈ Rn

f2(y) ≥ f2(x) + gT2 (y − x), ∀ y ∈ Rn

⇒ f1(y) + f2(y) ≥ f1(x) + f2(x) + (g1 + g2)T(y − x), ∀ y ∈ Rn,

which implies that g1 + g2 is a subgradient of f1 + f2 at x.

(c)

g is a subgradient of f at Ax+ b

⇐⇒ f(y) ≥ f(Ax+ b) + gT(y − (Ax+ b)), ∀ y ∈ Rn

⇐⇒ f(Ay + b) ≥ f(Ax+ b) + gT(Ay + b− (Ax+ b)), ∀ y ∈ Rn, (since A is invertible)

⇐⇒ h(y) ≥ h(x) + (ATg)T(y − x), ∀ y ∈ Rn, (here h(y) = f(Ay + b))

⇐⇒ ATg is a subgradient of h at x.

6 Problem 6

Inspired by the 1-D case, we can conjecture that any vector of the form
[
a b c

]T
, with a ∈ [−1, 1],

b ∈ [−1, 1], and c ∈ [−1, 1] is a subgradient of f at the (x1, x2, x3) = (0, 0, 0). To this end, we need to show
that for any a ∈ [−1, 1], b ∈ [−1, 1], and c ∈ [−1, 1], we have:

f(y) ≥ f(0) +
[
a b c

] y1y2
y3

 ,
which is equivalent as:

|y1|+ |y2|+ |y3| ≥ ay1 + by2 + cy3, ∀ y ∈ R3. (2)

Since a ∈ [−1, 1], b ∈ [−1, 1], and c ∈ [−1, 1], we have:

ay1 ≤ |y1|, by2 ≤ |y2|, cy3 ≤ |y3|.

Hence (2) holds and
[
a b c

]T
is a subgradient of f at the origin. Finally, it is easy to show that if a, b or

c are outside the interval [−1, 1], then
[
a b c

]T
cannot be a subgradient of f at the origin.
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