1 Problem 1

For any \(z \in \mathbb{Z} \), we have:

\[
g(y, z) \leq \max_{y \in \mathbb{Y}} g(y, z).
\]

Next, we minimize both sides over \(z \in \mathbb{Z} \), and the inequality still holds

\[
\min_{z \in \mathbb{Z}} g(y, z) \leq \min_{z \in \mathbb{Z}} \max_{y \in \mathbb{Y}} g(y, z).
\]

The left side of the above inequality is a function of \(y \), and the right side is a constant upper bound for the left side over all \(y \). Therefore, the maximum of the left side over \(y \) should still be upper bounded by the constant on the right side. Hence we have

\[
\max_{y \in \mathbb{Y}} \min_{z \in \mathbb{Z}} g(y, z) \leq \min_{z \in \mathbb{Z}} \max_{y \in \mathbb{Y}} g(y, z).
\]

2 Problem 2

The original problem is equivalent to

\[
\begin{aligned}
\text{minimize } & c^T x \\
\text{subject to } & Ax - b \leq 0,
\end{aligned}
\]

where \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, A = \begin{bmatrix} -1 & -2 \\ 3 & 1 \\ -1 & 1 \end{bmatrix}, \text{ and } b = \begin{bmatrix} -1 \\ 5 \\ 8 \end{bmatrix}. \]

To find the dual, for \(\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} \geq 0 \), we calculate \(D(\mu) \) as:

\[
D(\mu) = \min_{x \in \mathbb{R}^2} c^T x + \mu^T (Ax - b)
= \min_{x \in \mathbb{R}^2} (c^T + \mu^T A)x - \mu^T b
= \begin{cases}
-\infty & \text{if } c^T + \mu^T A \neq 0 \\
-\mu^T b & \text{if } c^T + \mu^T A = 0.
\end{cases}
\]

Notice that \(c^T + \mu^T A = 0 \) is equivalent to \(A^T \mu = -c \). Therefore, the dual problem is:

\[
\begin{aligned}
\text{maximize } & -\mu^T b \\
\text{subject to } & A^T \mu = -c, \mu \geq 0.
\end{aligned}
\]

To verify the strong duality, notice that the solution for the primal problem is given by \(x = (-5, 3) \), and the optimal value for the primal problem is \(-2\). For the dual problem, the optimal point is given by \(\mu = \begin{bmatrix} \frac{2}{3} \\ 0 \\ \frac{1}{3} \end{bmatrix} \), and the maximum value is \(-\mu^T b = -2\). Therefore, the primal and dual problems have the same solution. The strong duality holds.

Another way to verify strong duality is to use the Slater’s condition. For linear programming, finding a strictly feasible point for the primal problem (e.g. \(x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \)) does guarantee the strong duality to hold.
3 Problem 3

The Lagrangian of the problem is $L(x, \mu) = x^T Q x + \mu^T (Ax - b)$. Thus the Lagrangian dual function is:

$$D(\mu) = \min_x L(x, \mu)$$
$$= \min_x x^T Q x + \mu^T (Ax - b)$$
$$= \min_x x^T Q x + \mu^T A x - \mu^T b.$$

Since Q is positive definite, we can just take the derivative of $L(x, \mu)$ with respect to x and set it equal to 0. Then we obtain $x = -\frac{1}{2} Q^{-1} A^T \mu$, which leads to:

$$D(\mu) = -\frac{1}{4} \mu^T A Q^{-1} A^T \mu - \mu^T b.$$

Therefore, the dual problem is:

$maximize \ -\frac{1}{4} \mu^T A Q^{-1} A^T \mu - \mu^T b$

4 Problem 4

Let \bar{x} be a limit point of $\{x^{(k)}\}$ given by

$$\bar{x} = \min_{k \to \infty, k \in \mathcal{K}} x^{(k)}.$$

Assuming that $\min_{h(x)=0} f(x) = f^*$ exists, then we have:

$$f^* = \min_{h(x)=0} f(x)$$
$$= \min_{h(x)=0} f(x) + \lambda^T h(x) + c_k \|h(x)\|^2$$
$$\geq \min f(x) + \lambda^T h(x) + c_k \|h(x)\|^2$$
$$= f(x^{(k)}) + \lambda^T h(x^{(k)}) + c_k \|h(x^{(k)})\|^2.$$

This implies that

$$c_k \|h(x^{(k)})\|^2 + \lambda^T h(x^{(k)}) \leq f^* - f(x^{(k)})$$
$$\Rightarrow c_k \|h(x^{(k)})\|^2 - \|\lambda\| \|h(x^{(k)})\| \leq f^* - f(x^{(k)})$$
$$\Rightarrow -\|\lambda\| \|h(x^{(k)})\| \leq f^* - f(x^{(k)}), \quad (1)$$

where the second step applies Cauchy–Schwarz inequality. By continuity of f, we have $\lim_{k \to \infty} f(x^{(k)}) = f(\bar{x})$. Thus as $k \to \infty$, $f^* - f(x^{(k)})$ goes to $f^* - f(\bar{x})$ which is finite. Since $c_k \to \infty$ as $k \to \infty$, we get

$$\lim_{k \to \infty, k \in \mathcal{K}} \|h(x^{(k)})\| = 0.$$

By continuity of $\|h(x)\|$, we get

$$\lim_{k \to \infty, k \in \mathcal{K}} \|h(x^{(k)})\| = \|h(\bar{x})\| = 0.$$

Taking limit as $k \to \infty, k \in \mathcal{K}$ in (1), we get

$$f^* - f(\bar{x}) \geq 0.$$

But \bar{x} satisfies $h(\bar{x}) = 0$ and so $f(\bar{x}) \geq f^*$. Hence, every limit point is a global minimum.
5 Problem 5

(a)

\[g \text{ is a subgradient of } f \text{ at } x \]
\[\iff f(y) \geq f(x) + g^T(y - x), \forall y \in \mathbb{R}^n \]
\[\iff af(y) \geq af(x) + ag^T(y - x), \forall y \in \mathbb{R}^n, a > 0 \]
\[\iff ag \text{ is a subgradient of } af \text{ at } x. \]

(b) If \(g_1 \) is a subgradient of \(f_1 \) and \(g_2 \) is a subgradient of \(f_2 \) at \(x \), then

\[f_1(y) \geq f_1(x) + g_1^T(y - x), \forall y \in \mathbb{R}^n \]
\[f_2(y) \geq f_2(x) + g_2^T(y - x), \forall y \in \mathbb{R}^n \]
\[\implies f_1(y) + f_2(y) \geq f_1(x) + f_2(x) + (g_1 + g_2)^T(y - x), \forall y \in \mathbb{R}^n, \]

which implies that \(g_1 + g_2 \) is a subgradient of \(f_1 + f_2 \) at \(x \).

(c)

\[g \text{ is a subgradient of } f \text{ at } Ax + b \]
\[\iff f(y) \geq f(Ax + b) + g^T(y - (Ax + b)), \forall y \in \mathbb{R}^n \]
\[\iff f(Ay + b) \geq f(Ax + b) + g^T(Ay + b - (Ax + b)), \forall y \in \mathbb{R}^n, \text{ (since } A \text{ is invertible)} \]
\[\iff h(y) \geq h(x) + (A^Tg)^T(y - x), \forall y \in \mathbb{R}^n, \text{ (here } h(y) = f(Ay + b)) \]
\[\iff A^Tg \text{ is a subgradient of } h \text{ at } x. \]

6 Problem 6

Inspired by the 1-D case, we can conjecture that any vector of the form \([a \ b \ c]^T\), with \(a \in [-1, 1], b \in [-1, 1], \) and \(c \in [-1, 1]\) is a subgradient of \(f \) at the \((x_1, x_2, x_3) = (0, 0, 0)\). To this end, we need to show that for any \(a \in [-1, 1], b \in [-1, 1], \) and \(c \in [-1, 1]\), we have:

\[f(y) \geq f(0) + [a \ b \ c] \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \]

which is equivalent as:

\[|y_1| + |y_2| + |y_3| \geq ay_1 + by_2 + cy_3, \forall y \in \mathbb{R}^3. \tag{2} \]

Since \(a \in [-1, 1], b \in [-1, 1], \) and \(c \in [-1, 1]\), we have:

\[ay_1 \leq |y_1|, \quad by_2 \leq |y_2|, \quad cy_3 \leq |y_3|. \]

Hence (2) holds and \([a \ b \ c]^T\) is a subgradient of \(f \) at the origin. Finally, it is easy to show that if \(a, b\) or \(c\) are outside the interval \([-1, 1]\), then \([a \ b \ c]^T\) cannot be a subgradient of \(f \) at the origin.