SOLUTIONS HW 6

1 Problem 1

For any z € Z, we have:
9(y, z) < maxg(y, 2).
yey

Next, we minimize both sides over z € Z, and the inequality still holds

: o _
min g(y, z) < min max 9(y,z)

The left side of the above inequality is a function of y, and the right side is a constant upper bound for the
left side over all y. Therefore, the maximum of the left side over y should still be upper bounded by the
constant on the right side. Hence we have

max min z) < min max z).
yey Zezg(y, )< ZeZ yey 9y, 2)

2 Problem 2

The original problem is equivalent to

minimize ¢'z
subject to Ax — b <0,

1 -2 1 I
where x = [;1], c= B], A=1]3 1 |,andb= | 5 |. To find the dual, for u = |[u2| > 0, we calculate
2 -1 1 8 L3
D(p) as:
D(p) = min ¢'z + p" (Az — b)
z€R?
= min(c' +p"A)z —p'b
z€R?

oo ifeT+pTA£0
—u'b ifeT +puTA=0.

Notice that ¢" 4+ T A = 0 is equivalent to ATyt = —c. Therefore, the dual problem is:

maximize — p'b
subject to ATp = —c, p>0.

To verify the strong duality, notice that the solution for the primal problem is given by =z = (—5,3),
and the optimal value for the primal problem is —2. For the dual problem, the optimal point is given by
W= (%,07 %)7 and the maximum value is —u™b = —2. Therefore, the primal and dual problems have the
same solution. The strong duality holds.

Another way to verify strong duality is to use the Slater’s condition. For linear programming, finding a

strictly feasible point for the primal problem (e.g. z = [1 I]T) does guarantee the strong duality to hold.



3 Problem 3

The Lagrangian of the problem is L(z,u) = 2" Qx + u"(Az — b). Thus the Lagrangian dual function is:
D(p) = min L(z, )
= mzin Qx4+ ' (Az —b)
= mzin 2T Qx + " Az — p'b.

Since @ is positive definite, we can just take the derivative of L(x, ) with respect to x and set it equal to

0. Then we obtain = = —% ~L AT, which leads to:

1 _
D(p) = =" AQT AT — b,
Therefore, the dual problem is:

1
maximize — Z,uTAQflAT,u — b

4 Problem 4

Let Z be a limit point of {z(®)} given by

*

Assuming that miny,,)—o f(z) = f* exists, then we have:

£ = min f(2)

h(x)=0

= min_ f(z) + ATh(z) + e [h(z) |

> min f(x) + ATh(x) + cx||h(x)|®
= f@®) + ATh(z®) + ex[[h(z™)] 1.
This implies that
el )P + ATh(z®) < f* = fa™®)
= cp[[BEE)P = IM[[AEM)] < f* = f(=?)
= AR < £+ = f@®), (1)

where the second step applies Cauchy-Schwarz inequality. By continuity of f, we have limy o f(z®)) =
f(z). Thus as k — oo , f* — f(z®)) goes to f* — f(Z) which is finite. Since ¢, — 0o as k — oo, we get

; RV —
lim_ [ha®)] = o.

By continuity of ||h(z)]], we get

i BN = )| =
i) = @) =o.

Taking limit as k — 0o,k € K in (1), we get

f* = f@) =0

But z satisfies h(Z) = 0 and so f(Z) > f*. Hence, every limit point is a global minimum.



5 Problem 5
(a)

g is a subgradient of f at x
= fly) > fl@)+9"(y—x), VyeR"

> af(y) >af(x)+ag'(y—2), VyeR", a>0
<= ag is a subgradient of af at x.

(b) If g1 is a subgradient of f; and g is a subgradient of fo at z, then

Ay) 2 fi(@) +9i(y—2), YyeR
fa(y) = fa(z) + 95 (y —x), VyeR"
= fily) + foly) > fi(z) + fo(2) + (91 + 92) " (y — ), Vy€ER™,
which implies that g; + g2 is a subgradient of f; + f2 at x.
(c)
g is a subgradient of f at Ax + b

= f(y) 2 f(Az +b) +g"(y — (Az +1b)), YyeR"

— f(Ay+b) > f(Az +b)+ g"(Ay +b— (Az + b)), Vy € R", (since A is invertible)

<= h(y) = h(z) + (ATg) (y —2), ¥y eR", (here h(y) = f(Ay +b))

<= ATy is a subgradient of h at z.

6 Problem 6

Inspired by the 1-D case, we can conjecture that any vector of the form [a b C}T, with a € [-1,1],
be[-1,1], and ¢ € [-1,1] is a subgradient of f at the (z1,z2,23) = (0,0,0). To this end, we need to show
that for any a € [—1,1], b € [-1,1], and ¢ € [—1, 1], we have:

Y1
f@) 2 fO0)+a b o |y,
Y3
which is equivalent as:
lyi| + [yl + [ys| > ay1 + byz + cys, ¥y € R, (2)

Since a € [-1,1], b € [-1,1], and ¢ € [—1, 1], we have:
ayr < [yil, by2 < ly2|, cys < [ysl-

Hence (2) holds and [a b C}T is a subgradient of f at the origin. Finally, it is easy to show that if a, b or

¢ are outside the interval [—1, 1], then [a b C]T cannot be a subgradient of f at the origin.



