ECE 490 (Introduction to Optimization) – In-Class Problem Discussions

03/01/2022

Problem 1. Consider the following quadratic function:

$$f(x) = f(x_1, x_2) = 2x_1^2 + 2x_1x_2 + 2x_2^2 - 5x_2 + 2$$

- (a) If you use the steepest descent method to minimize the above function, how to choose the stepsize? Provide some reasons. What type of convergence behaviors will you get?
- (b) If Newton's method is applied, what type of convergence behavior will you get?
- (c) Find the minimum and maximum of f over \mathbb{R}^2 if they exist.
- (d) In general, what are the cons/pros of the steepest descent method when compared with Newton's method?

Problem 2. True or False. Provide reasons.

- (a) If S_1 and S_2 are two convex sets, then $S_1 \cup S_2$ is convex.
- (b) If S_1 and S_2 are two convex sets, then $S_1 \cap S_2$ is convex.
- (c) If f and g are both convex, then f(g(x)) is also convex.
- (d) Gradient descent algorithm always converges to a local optimizer for a smooth function.
- (e) For a strictly convex function, Newton's method always converges to a minimizer, starting from any point within the domain of this function.

Problem 3. Convergence under PL condition: Suppose f is L-smooth and also satisfies the PL condition:

$$f(x) - f(x^*) \le \frac{1}{2\mu} ||\nabla f(x)||^2$$

where x^* is the unique global min of f. If we apply the steepest descent method to minimize f, does $f(x_k)$ converge to $f(x^*)$? Try to prove a linear convergence bound in the following form:

$$f(x_k) - f(x^*) \le \rho^k C$$

where $0 < \rho < 1$ and C are fixed constants. What type of stepsize shall we use?