
ECE 490 (Introduction to Optimization) – In-Class Problem Discussions

03/01/2022

Problem 1. Consider the following quadratic function:

f(x) = f(x1, x2) = 2x21 + 2x1x2 + 2x22 − 5x2 + 2

(a) If you use the steepest descent method to minimize the above function, how to choose the stepsize? Provide
some reasons. What type of convergence behaviors will you get?

(b) If Newton’s method is applied, what type of convergence behavior will you get?

(c) Find the minimum and maximum of f over R2 if they exist.

(d) In general, what are the cons/pros of the steepest descent method when compared with Newton’s method?

Solutions

(a) We can choose the stepsize as α = 1
λmax

or α = 2
λmax+λmin

where λmax and λmin are the largest and smallest

eigenvalues of the Q matrix which is

[
4 2
2 4

]
. The method converges linearly. We can also use line search or

Armijo rule.

(b) Newton’s method converges in one step for this strongly-convex quadratic function.

(c) The maximum does not exist. The minimum can be solved by setting the gradient to be 0. The minimum is
achieved at (x1, x2) = (−5/6, 5/3).

(d) For this problem, Newton’s method converges in one step. This is faster than the steepest descent method.
However, Newton’s method requires the matrix inversion step, and this is quite expensive. So the per step cost
for Newton’s method is higher. In general, Newton’s method has faster local convergence but may diverge if
initialized from some place far from the optimal point.
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Problem 2. True or False. Provide reasons.

(a) If S1 and S2 are two convex sets, then S1 ∪ S2 is convex.

(b) If S1 and S2 are two convex sets, then S1 ∩ S2 is convex.

(c) If f and g are both convex, then f(g(x)) is also convex.

(d) Gradient descent algorithm always converges to a local optimizer for a smooth function.

(e) For a strictly convex function, Newton’s method always converges to a minimizer, starting from any point within
the domain of this function.

Solutions

(a) False. Consider S1 = [0, 1], and S2 = [2, 3]. Both are convex. The union is not convex.

(b) True. Take two points x and y which are both in ∈ S1 ∩ S2. Since x and y are both in S1 which is convex, the
line segment between x and y has to be in S1. Similarly, the line segment between x and y has to be in S1, and
hence has to be in S1 ∩ S2. Therefore, S1 ∩ S2 is convex.

(c) False. Think f(x) = −x and g(x) = x2. We have f(g(x)) = −x2 which is not convex.

(d) False. With a reasonable stepsize (i.e. α = 1
L ), the gradient descent method can find a stationary point. However,

having zero gradient does not mean that the point is a local optimizer. It can be a saddle point.

(e) False. Think about the function f(x) =
√

1 + x2. This is a strictly convex function. Newton’s method iterates
as xk+1 = −x3k. For |x0| > 1, Newton’s method diverges. In general, Newton’s method in pure form (α = 1 does
not have good global guarantees.
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Problem 3. Convergence under PL condition: Suppose f is L-smooth and also satisfies the PL condition:

f(x)− f(x∗) ≤ 1

2µ
||∇f(x)||2,

where x∗ is the unique global min of f . If we apply the steepest descent method to minimize f , does f(xk) converge
to f(x∗)? Try to prove a linear convergence bound in the following form:

f(xk)− f(x∗) ≤ ρkC

where 0 < ρ < 1 and C are fixed constants. What type of stepsize shall we use?

Solutions We have xk+1 − xk = −α∇f(xk). By smoothness, we have

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
L

2
||xk+1 − xk||2

= f(xk)−
(
α− Lα2

2

)
||∇f(xk)||2

From the PL inequality, we have −||∇f(x)||2 ≤ −2µ(f(xk)− f(x∗)). If α− Lα2

2 > 0, we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 2µ

(
α− Lα2

2

)
(f(xk)− f(x∗)) = (1− 2µα+ µLα2)(f(xk)− f(x∗))

Hence we have the bound f(xk)− f(x∗) ≤ (1− 2µα+ µLα2)k(f(x0)− f(x∗)). We can choose the stepsize as α = 1
L

and get the linear convergence rate bound f(xk)− f(x∗) ≤
(
1− µ

L

)k
(f(x0)− f(x∗)).
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