
ECE 490 (Introduction to Optimization) – Some Problems for Practice

Problem 1. Apply the optimality conditions to solve the following problems.

(a) Consider the unconstrained minimization problem

minimize 2x2 + 2xy + y2 − 10x− 10y

Determine all the local mins for this problem.

(b) Consider the constrained minimization problem

minimize 2x2 + 2xy + y2 − 10x− 10y

subject to x2 + y2 = 5

Determine all the local mins for the above problem.

(c) Consider the constrained minimization problem

minimize x2 + y2 − 14x− 6y

subject to x+ y ≤ 2
x+ 2y ≤ 4

Determine all the local mins for the above problem.

Solutions

(a) The objective function can be rewritten as

f(x, y) =
1

2

[
x
y

]T [
4 2
2 2

] [
x
y

]
−
[
10 10

] [x
y

]
Notice

[
4 2
2 2

]
=

[
2 0
0 0

]
+

[
2 2
2 2

]
� 0. The objective function is convex. Setting the gradient to 0, we have

4x+ 2y = 10

2x+ 2y = 10

Therefore, the only local (global) minimum is (x, y) = (0, 5).

(b) The Lagrangian function is given by L(x, y, λ) = 2x2 + 2xy + y2 − 10x− 10y + λ(x2 + y2 − 5).

By Lagrange multiplier theorem, we have

4x+ 2y − 10 + 2λx = 0

2x+ 2y − 10 + 2λy = 0

x2 + y2 − 5 = 0

This is a set of nonlinear equations. We can use a numerical solver to obtain two solutions (x, y, λ) = (1, 2, 1)

and (x, y, λ) = (−1.7246,−1.4233,−5.7246). Both points are regular since we have

[
2x
2y

]
6=
[
0
0

]
. Now we check

the second-order sufficient condition. For (x, y, λ) = (1, 2, 1), the Hessian of L is given by[
4 2
2 2

]
+ λ

[
2 0
0 2

]
=

[
4 2
2 2

]
+

[
2 0
0 2

]
� 0
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Therefore, the second-order sufficient condition is satisfied. Hence (1, 2) is a local minimum.

For (x, y, λ) = (−1.7246,−1.4233,−5.7246), the Hessian of L is given by[
4 2
2 2

]
+ λ

[
2 0
0 2

]
=

[
4 2
2 2

]
− 5.7246

[
2 0
0 2

]
≺ 0

Hence this point is not a local minimum.

(c) The Lagrangian function is given by L(x, y, µ) = x2 + y2 − 14x− 6y + µ1(x+ y − 2) + µ2(x+ 2y − 4). Now we
can apply the KKT condition to get

2x− 14 + µ1 + µ2 = 0

2y − 6 + µ1 + 2µ2 = 0

µ1 ≥ 0, µ2 ≥ 0

µ1(x+ y − 2) = 0

µ2(x+ 2y − 4) = 0

Notice that

[
1
1

]
and

[
1
2

]
are linearly independent. Hence all the points are regular. There are four cases.

Case 1: Both inequality constraints are inactive. Then µ1 = µ2 = 0. We have x = 7 and y = 3. However,
x+ y = 10 > 2. This is not a feasible point.

Case 2: Only the first inequality constraint is inactive. We have µ1 = 0 but µ2 > 0. So x + 2y = 4. We can
combine this with 2x− 14 + µ2 = 0 and 2y − 6 + 2µ2 = 0 to obtain x = 5.2, y = −0.6, and µ2 = 3.6. However,
x+ y = 4.6 > 2. This is not a feasible point.

Case 3: Only the second inequality constraint is inactive. We have µ2 = 0 but µ1 > 0. So x + y = 2. We can
combine this with 2x− 14 + µ1 = 0 and 2y − 6 + µ1 = 0 to obtain x = 3, y = −1, and µ1 = 8. This is a feasible

point since x+ 2y = 1 < 4. The Hessian of the Lagrangian function is equal to

[
2 0
0 2

]
� 0. Hence this is a local

minimum.

Case 4: Both inequality constraints are inactive. We have µ1 > 0 and µ2 > 0. We have x + y − 2 = 0 and
x + 2y − 4 = 0. Hence we have x = 0 and y = 2. Then we have µ1 + µ2 = 14 and µ1 + 2µ2 = 2. This leads to
µ2 = −12 < 0. This violates the KKT condition. Hence this case does not lead to any meaningful KKT point.

To summarize, the only local minimum is (x, y) = (3,−1).
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Problem 2. Consider the following constrained optimization problem

minimize 1
x1

+ 1
x2

+ 1
x3

subject to x1 + x3 ≤ 1 + 1√
2

x2 + x3 ≤ 1 + 1√
2

xi > 0, for i = 1, 2, 3

Use the KKT necessary conditions to find candidate points for the local minimum of this optimization problem.
Then use the general sufficiency condition to find the global minimum for the optimization problem.

Solutions Define g1(x) = x1 +x3−1− 1√
2

and g2(x) = x2 +x3−1− 1√
2
. We define the set S as S = {(x1, x2, x3) :

x1 > 0, x2 > 0, x3 > 0}. Notice ∇g1(x) =
[
1 0 1

]T
and ∇g2(x) =

[
0 1 1

]T
. Clearly, they are linearly

independent, and all the points are regular.
Then we define the Lagrangian function as

L(x, µ) =
1

x1
+

1

x2
+

1

x3
+ µ1g1 + µ2g2.

From the KKT condition, we have

− 1

x21
+ µ1 = 0

− 1

x22
+ µ2 = 0

− 1

x23
+ µ1 + µ2 = 0

µ1 ≥ 0, µ2 ≥ 0

µ1g1 = 0, µ2g2 = 0

x1 > 0, x2 > 0, x3 > 0

From the first two equations, we know µ1 > 0 and µ2 > 0. Hence both inequality constraints are active. We have
g1 = 0 and g2 = 0. Since g1 − g2 = 0, we have x1 = x2. Then we know µ1 = µ2 = 1

x2
1
. Therefore, we have x23 = 1

2x
2
1.

This leads to our final solution x1 = 1, x2 = 1, x3 = 1√
2
, µ1 = 1, and µ2 = 1.

To verify the global optimality, notice that the Hessian of the cost function is given by
2
x3
1

0 0

0 2
x3
2

0

0 0 2
x3
3

 � 0, for (x1, x2, x3) ∈ S

Therefore, the cost function is strictly convex over S. This further implies that the Lagrangian L(x, µ) is strictly
convex for x ∈ S since the constraint functions gi are linear. Therefore the point we found is the unique global
minimum of L(x, µ) on S. By the general sufficiency condition we can conclude that the point (1, 1, 1√

2
) is the unique

global minimum for the optimization problem.
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Problem 3. Duality:

(a) Consider the standard linear programming problem

minimize cTx
subject to Ax = b

x ≥ 0

Show that the dual of the dual for the above problem is just the primal problem itself.

(b) Consider the following problem
minimize x2 + 2xy + y2

subject to x2 = 1
y2 = 1

where x and y are scalar decision variables. What is the dual problem for the above problem?

(c) Consider the following problem
minimize x2 + y2

subject to 1− x− y − z ≤ 0
1− x− 2y − z ≤ 0
1− 2x− y + z ≤ 0

where x, y, and z are scalar decision variables. What is the dual problem for the above problem?

Solution

(a) To formulate the dual problem, we first write out the Lagrangian:

L(x, λ, µ) = cTx+ λT(Ax− b) + µT(−x) =
(
cT + λTA− µT

)
x− λTb

We have

D(λ, µ) = min
x∈Rp

L(x, λ, µ) =

{
−λTb if cT + λTA− µT = 0
−∞ Otherwise

Therefore, the dual problem is
maximize −bTλ

subject to c+ATλ− µ = 0
µ ≥ 0

Notice we can eliminate µ by using the relation µ = c+ATλ. The dual problem is then compactly rewritten as

minimize bTλ

subject to c+ATλ ≥ 0
(1)

Now we try to derive the dual problem for (1). We denote the Lagrangian multiplier for this dual problem as x.
Since the constraint in (1) is an inequality, we need x ≥ 0. The dual function for (1) is equal to

min
λ

(
bTλ− xT(c+ATλ)

)
=

{
−xTc if bT − xTAT = 0
−∞ Otherwise

Therefore, the dual problem for (1) is

maximize −xTc

subject to bT − xTAT = 0
x ≥ 0

which is equivalent to
minimize cTx

subject to Ax = b
x ≥ 0

Therefore, the dual of the dual is the primal problem itself.
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(b) We define the Lagrangian function as L = x2 + 2xy + y2 + λ1(x2 − 1) + λ2(y2 − 1). We have

L =

[
x
y

]T [
1 + λ1 1

1 1 + λ2

] [
x
y

]
− λ1 − λ2.

If

[
1 + λ1 1

1 1 + λ2

]
is positive semidefinite, then the minimum of L is achieved by choosing x = y = 0. Otherwise,

we can choose

[
x
y

]
to be the eigenvector associated with the negative eigenvalue of

[
1 + λ1 1

1 1 + λ2

]
and drive

the value of L to −∞. Therefore, the dual function can be calculated as

D(λ1, λ2) = min
x,y

L(x, y, λ1, λ2) =

 −λ1 − λ2 if

[
1 + λ1 1

1 1 + λ2

]
� 0

−∞ Otherwise

The dual problem is
maximize −λ1 − λ2

subject to

[
1 + λ1 1

1 1 + λ2

]
� 0

(c) We define the Lagrangian function as L = x2 + y2 + µ1(1− x− y− z) + µ2(1− x− 2y− z) + µ3(1− 2x− y+ z).
We require µi ≥ 0 for i = 1, 2, 3. If µ1 + µ2 − µ3 6= 0, we can choose z to drive L to −∞. If µ1 + µ2 − µ3 = 0,
we have

L = x2 + y2 + 2µ3 − 3µ3x− (µ1 + 2µ2 + µ3)y

which is strongly convex in (x, y). Setting gradient to 0, we get 2x−3µ3 = 0 and 2y = µ1 + 2µ2 +µ3 = µ2 + 2µ3.
Therefore, the dual function is

D(µ1, µ2, µ3) = min
x,y,z

L =

{
− 9

4µ
2
3 − 1

4 (µ2 + 2µ3)2 + 2µ3 if µ1 + µ2 − µ3 = 0
−∞ Otherwise

When µ1 + µ2 − µ3 = 0, the value of D actually does not depend on µ1. Therefore, the dual problem is

maximize − 9
4µ

2
3 − 1

4 (µ2 + 2µ3)2 + 2µ3

subject to µ2 ≥ 0, µ3 ≥ 0.
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Problem 4. Consider the constrained minimization problem:

minimize x2 + y2 + 2z2

subject to x− 1 ≥ 0
y + 1 ≥ 0
z ≥ 0

What is the optimal solution for this problem?
Now apply the barrier function method that iterates asxkyk

zk

 = argmin
x,y,z

{
x2 + y2 + 2z2 − εk ln(x− 1)− εk ln(y + 1)− εk ln(z)

}
where εk decreases to 0 as k increases. Does the above barrier function converge to the optimal solution of the
original problem? Prove your conclusion.

Solution Notice x2 ≥ 1 for any x ≥ 1. We have x2 + y2 + 2z2 ≥ 1 + 0 + 0 = 1. The lower bound on the right side
can be achieved using x = 1, y = 0, and z = 0. Notice this is a feasible point. Hence the global solution is provide
by this point. If x 6= 1, then we have x2 > 1. If y 6= 0 or z 6= 0, we will also have x2 + y2 + 2z2 > 1. This means that
(1, 0, 0) is the unique global minimum for this problem. This problem is relatively simple so there is no need to use
the KKT condition.

Now we apply the barrier method. For each k, setting the gradient to be 0 leads to

2x− εk
x− 1

= 0

2y − εk
y + 1

= 0

4z − εk
z

= 0

Since x ≥ 1 and 2x2 − 2x− εk = 0, we have x = 1+
√
1+2εk
2 .

Since y ≥ −1 and 2y2 + 2y − εk = 0, we have y = −1+
√
1+2εk
2 .

Since z ≥ 0 and 4z2 − εk = 0, we have z =
√
εk
2 .

We have

lim
εk→0

 1+
√
1+2εk
2

−1+
√
1+2εk
2√
εk
2

 =

1
0
0


Therefore, the barrier method converges to the optimal solution of the original problem.
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Problem 5. True or False. Provide reasons.

(a) Consider two closed intervals C1 ⊂ R+ and C2 ⊂ R+. Then C3 = {xy : x ∈ C1, y ∈ C2} is a convex set.

(b) Consider the point (y, s) ∈ Rn × R+ with ‖y‖ ≥ s. Then the projection of (y, s) on the set {(x, t) : ‖x‖ ≤ t} is
(s y
‖y‖ , s).

(c) A nonconvex optimization problem can have zero duality gap.

(d) The subgradient of a convex function always gives a descent direction.

Solution

(a) False. Suppose C1 = [1, 1.01], and C2 = [10, 11] ∪ [1000, 2000]. Choose x1 = 1 ∈ C1 and y1 = 10 ∈ C2, we have
x1y1 = 10 ∈ C3. Choose x2 = 1 ∈ C1 and y2 = 1000 ∈ C2, we have x2y2 = 2000 ∈ C3. The line segment between
10 and 2000 clearly contains some points which are not in C3. For example, we know 20 is not in C3.

(b) False. Suppose y is a scalar. Let’s project (2, 1) to the set {(x, t) : −t ≤ x ≤ t}. The resultant point is (1.5, 1.5),
not (1, 1)!

(c) True. Suppose we want to minimize −x2 subject to the constraint x2 + x ≤ 2. Clearly the objective function is
concave and hence not convex. The optimal value for the primal problem is achieved by x = −2. The optimal
value is −4. The dual function is given by

D(µ) = min
x

(−x2 + µ(x2 + x− 2)) = min
x

(µ− 1)x2 + µx− 2µ

If 0 ≤ µ ≤ 1, then D(µ) = −∞. If µ > 1, we have D(µ) = − µ2

4(µ−1) − 2µ. For µ > 1, this is a concave function.

The maximum value is achieved at µ = 4
3 , and the maximum value of the dual function is −4. So there is zero

duality gap.

(d) False. Consider f(x) = |x|. At x = 0, we know −1 is a subgradient. However, we have |t| > 0 for any non-zero
t. This means that the subgradient −1 not a descent direction.
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