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The convergence rate in Lecture Note 7 can be strengthened. We cover it here. Again,
we focus on the performance of the gradient method for the unconstrained minimization
problem

min
x∈Rp

f(x) (7.1)

where f : Rp → R is a differentiable function being L-smooth and m-strongly convex. We
know there exists a unique global min x∗ such that f(x∗) ≤ f(x) for all x ∈ Rp. The gradient
method iterates as follows

xk+1 = xk − α∇f(xk) (7.2)

The gradient method satisfies ‖xk − x∗‖ ≤ ρk‖x0 − x∗‖ for some 0 < ρ < 1 if a reasonable
stepsize α is used. The smaller ρ is, the faster the gradient method converges to the optimal
point x∗. However, ρ cannot be arbitrarily small (which means the gradient method cannot
converge as fast as we want). Now let’s try to understand how ρ depends on m, L, and α.

The main theorem describing how ρ depends on m, L, and α is stated as follows.

Theorem 7.1. Suppose f is L-smooth and m-strongly convex. Let x∗ be the unique global
min. Given a stepsize α, if there exists 0 < ρ < 1 and λ ≥ 0 such that[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
(7.3)

is a negative semidefinite matrix, then the gradient method satisfies ‖xk − x∗‖ ≤ ρk‖x0 − x∗‖.

The above theorem presents a sufficient testing condition for the linear convergence of the
gradient method. We will use the theorem to analyze the convergence rate of the gradient
method.

7.1 A Useful Lemma

Denote the p× p identity matrix as I. The following lemma is very helpful and will be used
to prove Theorem 7.1.
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Lemma 7.2. Suppose the sequences {ξk ∈ Rp : k = 0, 1, . . .} and {uk ∈ Rp : k = 0, 1, 2, . . .}
satisfy ξk+1 = ξk − αuk. In addition, assume the following inequality holds for all k[

ξk
uk

]T
M

[
ξk
uk

]
≥ 0. (7.4)

If there exist 0 < ρ < 1 and λ ≥ 0 such that[
(1− ρ2)I −αI
−αI α2I

]
+ λM (7.5)

is a negative semidefinite matrix, then the sequence {ξk : k = 0, 1, . . .} satisfies ‖ξk‖ ≤ ρk‖ξ0‖.

Proof: The key relation is

‖ξk+1‖2 = ‖ξk − αuk‖2 = ‖ξk‖2 − 2α(ξk)
Tuk + α2‖uk‖2 =

[
ξk
uk

]T [
I −αI
−αI α2I

] [
ξk
uk

]
(7.6)

Since (7.5) is negative semidefinite, we have[
ξk
uk

]T([
(1− ρ2)I −αI
−αI α2I

]
+ λM

)[
ξk
uk

]
≤ 0 (7.7)

We just expand the above inequality as[
ξk
uk

]T [
I −αI
−αI α2I

] [
ξk
uk

]
+

[
ξk
uk

]T [−ρ2I 0p
0p 0p

] [
ξk
uk

]
+ λ

[
ξk
uk

]T
M

[
ξk
uk

]
≤ 0 (7.8)

Applying the key relation (7.6), the above inequality can be rewritten as

‖ξk+1‖2 − ρ2‖ξk‖2 + λ

[
ξk
uk

]T
M

[
ξk
uk

]
≤ 0 (7.9)

Due to the condition (7.4) and the non-negativity of λ, we have

‖ξk+1‖2 − ρ2‖ξk‖2 ≤ −λ
[
ξk
uk

]T
M

[
ξk
uk

]
≤ 0

Hence ‖ξk+1‖ ≤ ρ‖ξk‖ for all k. Therefore, we have ‖ξk‖ ≤ ρ‖ξk−1‖ ≤ ρ2‖ρk−2‖ ≤ . . . ≤
ρk‖ξ0‖.

It is emphasized that the condition (7.4) does not state that M is a positive semidefinite
matrix. The inequality (7.4) is only assumed to hold for the two given sequences {ξk ∈ Rp :
k = 0, 1, . . .} and {uk ∈ Rp : k = 0, 1, 2, . . .}. In addition, the relation ξk+1 = ξk − αuk is
equivalent to

ξk+1 =
[
I −αI

] [ξk
uk

]
which states that ξk+1 is a linear function of (ξk, uk). This is the reason why ‖ξk+1‖2 is just
a quadratic form of (ξk, uk) as shown in (7.6).
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7.2 Proof of Theorem 2.1

When f is L-smooth and m-strongly convex, one can prove the following inequality holds
for x, y ∈ Rp

(∇f(x)−∇f(y))T(x− y) ≥ mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2 (7.10)

This is the so-called co-coercivity property. You will be asked to prove this inequality in
homework. This inequality can be rewritten as[

x− y
∇f(x)−∇f(y)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− y

∇f(x)−∇f(y)

]
≥ 0. (7.11)

Setting y = x∗ and noticing ∇f(x∗) = 0, the above inequality leads to[
x− x∗
∇f(x)

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
x− x∗
∇f(x)

]
≥ 0. (7.12)

The gradient method xk+1 = xk − α∇f(xk) can be rewritten as xk+1 − x∗ = xk − x∗ −
α∇f(xk). We set ξk = xk − x∗, and uk = ∇f(xk). Then the gradient method is exactly
ξk+1 = ξk − αuk where (ξk, uk) satisfies[

ξk
uk

]T [ −2mLI (m+ L)I
(m+ L)I −2I

] [
ξk
uk

]
≥ 0. (7.13)

The above inequality is just a restatement of (7.12). Therefore, we can choose M =[
−2mLI (m+ L)I

(m+ L)I −2I

]
and apply Lemma 7.2 to directly prove Theorem 7.1. The final

fact required for the proof is that

[
a b
b c

]
is negative semidefinite if and only if

[
aI bI
bI cI

]
is

negative semidefinite (verify this!).

7.3 Convergence Rates of Gradient Method

Now we apply Theorem 7.1 to obtain the convergence rate ρ for the gradient method with
various stepsize choices.

• Case 1: If we choose α = 1
L

, ρ = 1− m
L

, and λ = 1
L2 , we have[

1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
−m2

L2
m
L2

m
L2 − 1

L2

]
=

1

L2

[
−m2 m
m −1

]
(7.14)

The right side is clearly negative semidefinite due to the fact that

[
a
b

]T [−m2 m
m −1

] [
a
b

]
=

−(ma− b)2 ≤ 0. Therefore, the gradient method with α = 1
L

converges as

‖xk − x∗‖ ≤
(

1− m

L

)k
‖x0 − x∗‖ (7.15)
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• Case 2: If we choose α = 2
m+L

, ρ = L−m
L+m

, and λ = 2
(m+L)2

, we have[
1− ρ2 −α
−α α2

]
+ λ

[
−2mL m+ L
m+ L −2

]
=

[
0 0
0 0

]
(7.16)

The zero matrix is clearly negative semidefinite. Therefore, the gradient method with
α = 2

m+L
converges as

‖xk − x∗‖ ≤
(
L−m
L+m

)k
‖x0 − x∗‖ (7.17)

Notice L ≥ m > 0 and hence 1 − m
L
≥ L−m

L+m
. This means the gradient method with

α = 2
m+L

converges slightly faster than the case with α = 1
L

. However, m is typically

unknown in practice. The step choice of α = 1
L

is also more robust. The most popular
choice for α is still 1

L
.

We can further express ρ as a function of α. To do this, we need to choose λ carefully
for a given α. If we choose λ reasonably, we can show the best value for ρ that we can find
is max{|1−mα|, |Lα− 1|}.

7.4 From convergence rate to iteration complexity

The convergence rate ρ naturally leads to an iteration number T guaranteeing the algorithm
to achieve the so-called ε-optimality, i.e. ‖xT − x∗‖ ≤ ε 1.

To guarantee ‖xT − x∗‖ ≤ ε, we can use the bound ‖xT − x∗‖ ≤ ρT‖x0 − x∗‖. If we
choose T such that ρT‖x0 − x∗‖ ≤ ε, then we guarantee ‖xT − x∗‖ ≤ ε. Denote c =
‖x0 − x∗‖. Then cρk ≤ ε is equivalent to

log c+ k log ρ ≤ log(ε) (7.18)

Notice ρ < 1 and log ρ < 0. The above inequality is equivalent to

k ≥ log
(ε
c

)
/ log ρ = log

(c
ε

)
/(− log ρ) (7.19)

So if we choose T = log
(
c
ε

)
/(− log ρ), we guarantee ‖xT − x∗‖ ≤ ε.

Notice log ρ ≤ ρ − 1 < 0 (this can be proved using the concavity of log function), so
1

1−ρ ≥ −
1

log ρ
and we can also choose T = log

(
c
ε

)
/(1 − ρ) ≥ log

(
c
ε

)
/(− log ρ) to guarantee

‖xT − x∗‖ ≤ ε.
Another interpretation for T = log

(
c
ε

)
/(1 − ρ) is that a first-order Taylor expansion

of − log ρ at ρ = 1 leads to − log ρ ≈ 1 − ρ. So log
(
c
ε

)
/(− log ρ) is roughly equal to

log
(
c
ε

)
/(1− ρ) when ρ is close to 1.

1In many situations people require ε-optimal solution xT to satisfy f(xT ) − f(x∗) ≤ ε. We will talk
about this case in late lectures. Typically this ends up with the same iteration complexity since we have
f(x)− f(x∗) = O(‖x− x∗‖2) in many cases.
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Clearly the smaller T is, the more efficient the optimization method is. The iteration
number T describes the “ε-optimal iteration complexity” of the gradient method for smooth
strongly-convex objective functions.

• For the gradient method with α = 1
L

, we have ρ = 1 − m
L

= 1 − 1
κ

and hence T =
log
(
c
ε

)
/(1 − ρ) = κ log

(
c
ε

)
= O

(
κ log(1

ε
)
)
. 2 Here we use the big O notation to

highlight the dependence on κ and ε and hide the dependence on the constant c.

• For the gradient method with α = 2
L+m

, we have ρ = κ−1
κ+1

= 1 − 2
κ+1

and hence

T = log
(
c
ε

)
/(1 − ρ) = κ+1

2
log
(
c
ε

)
. Although κ+1

2
≤ κ, we still have κ+1

2
log
(
c
ε

)
=

O
(
κ log(1

ε
)
)
. Therefore, the stepsize α = 2

m+L
can only improve the constant C hidden

in the big O notation of the iteration complexity. People call this “improvement of a
constant factor”.

• In general, when ρ has the form ρ = 1− 1/(aκ+ b), the resultant iteration complexity
is always O

(
κ log(1

ε
)
)
.

How shall we interpret the iteration complexity O
(
κ log(1

ε
)
)
? It states that the required

iteration T scales with the condition number κ. For larger κ, more iterations are required.
This is consistent with our intuition since larger κ means the problem is ill-conditioned
and more difficult to solve. There are algorithms which can significantly decrease the it-
eration complexity for unconstrained optimization problems with smooth strongly-convex
objective functions. For example, Nesterov’s method can decrease the iteration complexity
from O

(
κ log(1

ε
)
)

to O
(√

κ log(1
ε
)
)
. Momentum is used to accelerate optimization as:

xk+1 = xk − α∇f((1 + β)xk − βxk−1) + β(xk − xk−1).

The theory for Nesterov’s method is quite involved, and we skip those theoretical results
here.

7.5 Two application examples

Finally we will discuss two application examples for unconstrained optimization with smooth
strongly-convex objective functions.

7.5.1 Ridge regression

The ridge regression is formulated as an unconstrained minimization problem with the fol-
lowing objective function

f(x) =
1

n

n∑
i=1

(aTi x− bi)2 +
λ

2
‖x‖2 (7.20)

2For any functions h(ε, κ) and g(ε, κ), we say h(ε, κ) = O(g(ε, κ)) if there exists a constant C such that
|h(ε, κ)| ≤ C|g(ε, κ)|.
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where ai ∈ Rp and bi ∈ R are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear relationship
between a and b. One wants to predict b from a as b = aTx. The ridge regression gives
a way to find such x based on the observed pairs of (ai, bi).

• Why is there a term λ
2
‖x‖2? The term λ

2
‖x‖2 is called `2-regularizer. It confines

the complexity of the linear predictors you want to use. The high-level idea is that
you want x to work for all (a, b), not just the observed pairs (ai, bi). This is called
“generalization” in machine learning. So adding such a term can induce the so-called
stability and helps the predictor x to “generalize” for the data you have not seen. You
need to take a machine learning course if you want to learn about generalization.

• What is λ? λ is a hyperparameter which is tuned to trade off training performance and
generalization. For the purpose of this course, let’s say λ is a fixed positive number.
In practice, λ is typically set as a small number between 10−8 and 0.1.

This is a quadratic minimization problem with smooth strongly-convex objective func-
tions, and the gradient method is guaranteed to achieve an iteration complexity ofO(κ log(1

ε
)).

7.5.2 `2-Regularized Logistic regression

The `2-regularized logistic regression is formulated as an unconstrained minimization problem
with the following objective function

f(x) =
1

n

n∑
i=1

log(1 + e−bia
T
i x) +

λ

2
‖x‖2 (7.21)

where ai ∈ Rp and bi ∈ {−1, 1} are data points used to fit the linear model x.

• What is this problem about? The purpose of this problem is to fit a linear “classifier”
between a and b. Let’s say you have collected a lot of images for cats and dogs. You
augment the pixels of any such image into a vector a and wants to predict whether the
image is a cat or a dog. Let’s say b = 1 if the image is a cat, and b = −1 if the image
is a dog. So you want to predict b based on a. You want to find x such that b = 1
when aTx ≥ 0, and b = −1 when aTx < 0. The logistic regression gives a way to find
such x based on the observed feature/label pairs of (ai, bi). You may want to take a
statistics course or a machine learning course if you want to learn more about logistic
regression.

• Why is there a term λ
2
‖x‖2? Again, the term λ

2
‖x‖2 is the `2-regularizer. It is used

to induce generalization and help x work on all the (a, b) not just the observed data
points (ai, bi).

The function (7.21) is also L-smooth and m-strongly convex. Hence the gradient method
can be applied here to achieve an iteration complexity of O(κ log(1

ε
)).
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