
ECE 490: Introduction to Optimization Spring 2022

Supplementary Material for Note 8
Extensions of Newton’s Method: Quasi-Newton, BFGS, Trust-Region

Lecturer: Bin Hu, Date:02/22/2022

Newton’s method has some disadvantages. Now we discuss some potential fix.

8.1 A New Interpretation of Newton’s Method

We start from a new interpretation of Newton’s method. First, we consider the steepest
descent method xk+1 = xk − α∇f(xk), which can be interpreted as follows. At each step k,
we are actually solving a quadratic minimization problem

xk+1 = arg min
x∈Rp

{
f(xk) +∇f(xk)

T(x− xk) +
1

2α
‖x− xk‖2

}
The quadratic cost

{
f(xk) +∇f(xk)

T(x− xk) + 1
2α
‖x− xk‖2

}
is just the sum of the Taylor

expansion of f at xk and an `2 regularizar. If we know f is L-smooth, then we know

f(x) ≤ f(xk) +∇f(xk)
T(x− xk) +

L

2
‖x− xk‖2

So the gradient method with α = 1
L

is actually minimizing the above quadratic upper bound
for f at each k.

Can we improve the optimization process by minimizing a better quadratic estimation of
f at each k? This natural question leads to Newton’s method, which iterates as

xk+1 = arg min
x∈Rp

{
f(xk) +∇f(xk)

T(x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

}
(8.1)

At each step k, we estimate f by its second-order Taylor expansion f(xk) + ∇f(xk)
T(x −

xk)+ 1
2
(x−xk)T∇2f(xk)(x−xk) and then minimize this quadratic estimation. Intuitively, the

Taylor expansion gives a good local estimate for f but may not give a good global estimation.
Consequently, Newton’s method sometimes does not even converge if the iterates are too far
away from the optimal points.

8.2 Quasi-Newton Methods

Quasi-Newton Methods are a family of methods that follow the idea of Newton’s Method
but estimate the Hessian ∇2f(xk) with some simpler matrix Hk. Specifically, Quasi-Newton
methods have the iteration form:

xk+1 = xk − αkH−1
k ∇f(xk)

8-1



ECE 490 Lecture 8 — 02/22/2022 Spring 2022

where Hk is some estimated version of ∇2f(xk), and the stepsize αk is typically determined
by Armijo rule.

Recall that the idea of Newton’s method is based on approximating the objective function
f(x) as a quadratic function via Taylor expansion:

f(x) ≈ f(xk) +∇f(xk)
T(x− xk) +

1

2
(x− xk)T∇2f(xk)(x− xk)

What if we estimate ∇2f(xk) with some simpler matrix Hk? Specifically, we define

g(x) = f(xk) +∇f(xk)
T(x− xk) +

1

2
(x− xk)THk(x− xk)

Then we hope g(x) ≈ f(x) and optimize g for this step. What properties should Hk have
such that g is a good estimate for f? It is reasonable to just enforce ∇f(xk) = ∇g(xk) and
∇f(xk−1) = ∇g(xk−1). The condition ∇f(xk) = ∇g(xk) is automatically satisfied. What
about ∇f(xk−1) = ∇g(xk−1)? This is equivalent to

Hk(xk − xk−1) = ∇f(xk)−∇f(xk−1) (8.2)

The above condition is called the secant equation. Therefore, we should choose Hk based on
this condition. There are infinitely many Hk satisfying this condition. Various choices of Hk

lead to different Quasi-Newton methods. We will talk about the most popular one, i.e. the
BFGS method.

8.3 BFGS Method

We need Hk to be constructed in a way that it can be efficiently computed. It will be
nice if Hk can be computed by some iterative formula Hk = Hk−1 + Mk−1. Another nice
property we want Hk to have is the positive definiteness. If Hk is positive definite, we can at
least guarantee that the BFGS method is a decent method, i.e. f(xk+1) ≤ f(xk). Suppose
we choose H0 > 0 and then guarantee Mk ≥ 0. Then by induction we have the positive
definiteness of Hk. So one reasonable thing to do is to set up {Hk} using the following
iterative formula:

Hk+1 = Hk + akvkv
T
k + bkuku

T
k (8.3)

where vk ∈ Rp and uk ∈ Rp are some vectors. If H0 > 0, the above iterative formula
just guarantees Hk to be positive definite. How can we choose vk and uk to guarantee the
secant equation Hk+1(xk+1 − xk) = ∇f(xk+1) − ∇f(xk)? Let’s denote sk = xk+1 − xk and
yk = ∇f(xk+1)−∇f(xk). The secant equation becomes Hk+1sk = yk. Substituting this into
(8.3) leads to

yk = Hk+1sk = Hksk + akvkv
T
k sk + bkuku

T
k sk

8-2



ECE 490 Lecture 8 — 02/22/2022 Spring 2022

Since vkv
T
k sk = vk(v

T
k sk) = (vTk sk)vk and uku

T
k sk = uk(u

T
k sk) = (uTk sk)uk, the above equation

is just equivalent to

yk −Hksk = ak(v
T
k sk)vk + bk(u

T
k sk)uk

How can we choose vk, uk, ak, and bk such that the above equation is satisfied? We can
choose vk = yk and ak(v

T
k sk) = 1 so that the first terms on the left and right sides exactly

match. Similarly, we can choose uk = Hksk and bk(u
T
k sk) = −1 so that the second terms on

the left and right sides exactly match. Therefore, we have vk = yk, uk = Hksk, ak = 1
yTksk

,

and bk = − 1
sTkHksk

. The iteration formula (8.3) becomes

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kHk

sTkHksk
(8.4)

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). This is exactly the BFGS method.
When implementing the BFGS method xk+1 = xk − αkH

−1
k ∇f(xk), it will be better to

directly update H−1
k other than first obtaining Hk and then solving H−1

k ∇f(xk). Based on
(8.4), one can use the matrix inversion lemma to show

H−1
k+1 =

(
I − sky

T
k

yTk sk

)
H−1
k

(
I − yks

T
k

yTk sk

)
+
sks

T
k

yTk sk
(8.5)

You will be asked to show the above formula in Homework 3. Therefore, for the BFGS
method, the computation cost is mainly required for updating (8.5). At each iteration, the
main computation is doing the matrix multiplication twice and the cost scales with O(p2)
if x ∈ Rp. In contrast, Newton’s method requires computing the Hessian ∇2f(xk) and then
solving the linear equation ∇2f(xk)dk = ∇f(xk). The cost for solving the linear equation
∇2f(xk)dk = ∇f(xk) scales with O(p3) in general 1. Therefore, the per iteration computation
cost for Newton’s method is the cost for computing Hessian plus some value scaling with
O(p3). This is much higher than the per iteration cost for the BFGS method which roughly
scales with O(p2).

Locally, the BFGS method also achieves superlinear convergence. This is similar to
Newton’s method. One interpretation for the BFGS update (8.5) is that H−1

k+1 is chosen to
be as close to H−1

k as possible for some appropriate metric quantifying the distance between
two matrices. We skip the details of these interpretations.

It is worth mentioning that the BFGS method requires storing H−1
k in memory. When p

is large, this could be an issue. Therefore, the limited-memory BFGS (L-BFGS) method is
developed. We will not talk about L-BFGS in details in this course.

Compared with the gradient method, Newton’s method typically requires much less it-
erations but the per iteration cost is significantly higher. The BFGS method can be viewed
as an interpolation of the gradient method and Newton’s method. There is another method

1When there is some sparsity in the Hessian matrix, one can solve this equation much faster. But in
general, O(p3) is the required cost.

8-3



ECE 490 Lecture 8 — 02/22/2022 Spring 2022

called the conjugate gradient method which can also be viewed as some interpolation of the
gradient method and Newton’s method. Due to the time constraint, we will not cover this
method in the class.

8.4 Trust-Region Method and Cubic Regularization

We briefly mention a few variants for Newton’s method. One issue for Newton’s method is
that the quadratic function f(xk) +∇f(xk)

T(x−xk) + 1
2
(x−xk)T∇2f(xk)(x−xk) may only

be a good estimate for f when x is not far from xk. What if we enforce xk+1 to be not far
from xk in the update? This is the idea of the trust region method. At each step k, the trust
region method updates xk+1 as

xk+1 = arg min
‖x−xk‖≤∆k

{
f(xk) +∇f(xk)

T(x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

}
(8.6)

So we restrict xk+1 to be in a trust region ‖x− xk‖ ≤ ∆k. The parameter ∆k can be tuned.
When ∆k is large, the trust region update behaves more similarly to Newton’s method. The
trust region method fixes the global convergence issue of Newton’s method to some extent. It
also gets a lot of recent attention due to its ability to escape saddle points. One can actually
show that the trust region method can escape strict saddle points under some assumptions.

One can also add higher order term ‖x− xk‖3 to the quadratic estimation f(xk) +
∇f(xk)

T(x− xk) + 1
2
(x− xk)T∇2f(xk)(x− xk). This is the idea of cubic regularization.

8-4


