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In this note, we will cover a few more technical issues for optimization in large-scale
machine learning.

9.1 Stochastic Gradient Descent (SGD)

In machine learning, many problems are in the form of finite-sum minimization

min
x∈Rp

1

n

n∑
i=1

fi(x) (9.1)

The objective function has a finite sum structure, i.e. f = 1
n

∑n
i=1 fi. This type of objective

functions arise naturally from machine learning. The finite-sum minimization is also called
empirical risk minimization (ERM). In ERM, the number n is the number of the data points
in the training set. Typically one has fi(x) = li(x) + Ω(x) where li is the loss function
preventing underfit and Ω(x) is the regularizer preventing overfit. So li(x) measure how x
fits the i-th data point. The smaller li(x) is, the better x fits the i-th data point. Ω(x)
measures the complexity of x and can prevents overfitting. More motivations for ERM will
be taught in a machine learning course.

If we apply the gradient method, we need to evaluate∇f = 1
n

∑n
i=1∇fi for each iteration.

In other words, we need to evaluate the gradient on all the data points. The computation
cost for each iteration scales with O(n). So the total computation cost to achieve ε-accuracy
is T × O(n) where T is the iteration complexity. For example, the total computation cost
for the gradient method scales with

O

(
κ log

1

ε

)
×O(n) = O

(
nκ log

1

ε

)
For big data applications, n is typically very large. The per iteration cost of the gradient

method is high. This motivates the use of the stochastic gradient descent (SGD) method.
SGD iterates as

xk+1 = xk − α∇fik(xk)

where ik is uniformly sampled from {1, 2, . . . , n} in an I.I.D manner. In other words, one
data point is sampled at every iteration and the gradient is only evaluated on that data
point. By doing this, the computation cost for each iteration does not depend on n and
scales with O(1). The hope is that there will be a lot of redundancy between data points
and SGD will work well in some average sense in the long run.
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9.2 Subgradient Method

Sometimes the activation function is not differentiable at certain points. Then we need the
concept of subgradient. Recall for a convex differentiable f , we have

f(y) ≥ f(x) +∇f(x)T(y − x) ∀y ∈ Rp

If f is convex and not differentiable at x, we can still find vector g such that f(y) ≥
f(x)+gT(y−x) ∀y ∈ Rp. This vector g is called the subgradient. Consider a one-dimensional
example f(x) = |x|. This function is not differentiable at x = 0. But there are many
subgradients at x = 0. Actually any −1 ≤ g ≤ 1 is a subgradient in this case. As long as f
is convex, it has some subgradient at every point. If f is differentiable, then at each point it
has a unique subgradient which is its gradient. The set of all subgradients at x is called the
subdifferential at x, and is denote as ∂f(x).

For machine learning tasks with non-smooth activation functions, we can replace σ′ with
its subgradient.
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