ECE 490 (Introduction to Optimization) - Homework 1

Due: 11:59pm, Feb. 10

Problem 1. (15 points) Suppose $f(x)=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}+e^{-x_{4}}+e^{x_{4}}$.
(a) Does f achieve its minimum and maximum over the set:

$$
\mathcal{S}_{1}=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+x_{4}^{2} \leq 20\right\} ?
$$

(b) Does f achieve its minimum and maximum over \mathbb{R}^{4} ?
(c) Does f achieve its minimum and maximum over the set:

$$
\mathcal{S}_{2}=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}+2 x_{2}^{2} \leq 5\right\} ?
$$

Problem 2. (20 points) Optimality conditions:
(a) For a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, suppose $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succeq 0$. Is this sufficient for x^{*} to be a local minimizer? Either prove that it is sufficient or produce a counterexample.
(b) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}\right)^{2}
$$

Find all the stationary points of f. What are the global minimizers of f ?
Problem 3. (15 points) Consider $f=x^{4}-16 x^{2}+64$, where $x \in \mathbb{R}$.
(a) Find all the stationary points of f.
(b) Identify which of these stationary points is a local minimum, local maximum, or neither.
(c) Find the global minimum and global maximum of f if they exist.

Problem 4. (25 points) Identify which of these matrices is PSD, PD, NSD, or ND, or none of the above (inde nite):

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right], B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], C=\left[\begin{array}{ll}
4 & 3 \\
3 & 1
\end{array}\right], D=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right], E=\left[\begin{array}{ccc}
-3 & -3 & 0 \\
-3 & -5 & 1 \\
0 & 1 & -8
\end{array}\right]
$$

Problem 5. Convexity:
(a) (10 points) We showed in class that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function, then:

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{n}: f(x) \leq a\right\}
$$

is a convex set for all $a \in \mathbb{R}$. Give an example to illustrate that if f is not convex, the above set \mathcal{S} may not be convex.
(b) (10 points) Consider the ℓ_{p} norm of a vector $x \in \mathbb{R}^{n}$, given by

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Draw the sets $\mathcal{S}:=\left\{x \in \mathbb{R}^{2}:\|x\|_{p} \leq 1\right\}$ for $p=1,2$. Are these "unit p-norm balls" convex?
(c) (5 points) Suppose $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{2}^{2}+0.5 x_{3}^{2}+2 x_{1} x_{3}+3 x_{2} x_{3}+x_{1}+x_{2}+x_{3}+2$. Is f convex, concave, or neither?

