ECE 490 (Introduction to Optimization) - Homework 2

Due: 11:59pm, Feb. 24

Problem 1. (15 points) Minimization of Quadratic Functions
(a) Suppose $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+2 x_{2} x_{3}-2 x_{1}-2 x_{2}-2 x_{3}+5$. Find the minimum and maximum of f over \mathbb{R}^{3} if they exist. (You are expected to do the calculations by hand.)
(b) Consider the positive definite quadratic minimization problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} Q x$ where Q is a positive definite matrix. Apply the gradient method with the stepsize α_{k} chosen by the direct line search. What is α_{k} ? Write out α_{k} as a function of Q and x_{k}.
(c) Consider the ridge regression problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left\{\left(a_{i}^{T} x-b_{i}\right)^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}\right\}$, where $\lambda>0$ and (a_{i}, b_{i}) (for $i=1,2, \cdots, n)$ are given. What is the optimal solution x^{*} ? is the optimal solution unique?

Problem 2. (15 points) Convexity and Concavity:
(a) Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. For $y_{1}, y_{2} \in \mathbb{R}^{n}$, define the function $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=f\left(x\left(y_{1}-y_{2}\right)+y_{2}\right)$, for $x \in \mathbb{R}$. Prove that f is convex on \mathbb{R}^{n} if and only if g is convex on \mathbb{R} for all $y_{1}, y_{2} \in \mathbb{R}^{n}$.
(b) Is the following set convex?

$$
\mathcal{S}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0, \text { and } x_{1} \log \left(x_{1}\right)+x_{2} \log \left(x_{2}\right) \leq 4\right\} .
$$

Hint: You can check the convexity of $f\left(x_{1}, x_{2}\right):=x_{1} \log \left(x_{1}\right)+x_{2} \log \left(x_{2}\right)$ by calculating its Hessian.
(c) Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave increasing function. Prove that $f(g(x))$ is a concave function.

Problem 3. (10 points) Consider the problem of minimizing the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as:

$$
f(x)=f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+2 x_{2}^{4}
$$

. Use steepest descent with Armijo's Rule, with parameters $\tilde{\alpha}=1, \sigma=0.05$, and $\beta=0.5$. Find α_{k} if $x_{k}=(1,0)$.

Problem 4. (10 points) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function and assume that $f(x) \geq f_{\min }$, for all x. Here $f_{\min }$ is finite. Consider the following version of gradient descent method with constant step size

$$
x_{k+1}=x_{k}-\alpha D \nabla f\left(x_{k}\right)
$$

where D is a positive definite matrix. Let $\lambda_{\min }>0$ and $\lambda_{\max }>0$ denote the minimum and maximum eigenvalues of D. Assume that f has Lipschitz gradients with Lipschitz constant L. Show that if

$$
0<\alpha<\frac{2 \lambda_{\min }}{L \lambda_{\max }^{2}}
$$

then

$$
\lim _{k \rightarrow \infty} \nabla f\left(x_{k}\right)=0
$$

Problem 5. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 \frac{1-\epsilon}{1+\epsilon} x_{1} x_{2}+x_{2}^{2}
$$

with $0<\epsilon<1$. Now, we consider the minimization problem of f, i.e. $\min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)$.
(a) (5 points) What are the minimizers of f ?
(b) (10 points) Find the largest $m>0$ and the smallest $M>0$ in terms of ϵ such that

$$
m I \preceq \nabla^{2} f\left(x_{1}, x_{2}\right) \preceq M I
$$

for all $\left(x_{1}, x_{2}\right)$, where I is the identity matrix. Find the condition number of $\nabla^{2} f$ given by $\kappa:=\frac{M}{m}$ in terms of ϵ.
(c) (5 points) How does κ change as ϵ decreases to 0 . Do you expect gradient descent to converge faster or slower as ϵ decreases to 0 ?
(d) (20 points) Write Python or Matlab code to implement gradient descent with constant step-size $\alpha=\frac{m}{2 M^{2}}$ starting from $\left(x_{1}, x_{2}\right)=(1,1)$. Plot the trajectories of gradient descent for $\epsilon=1,0.1,0.01,0.001$ in the parameter space, i.e., the space of $\left(x_{1}, x_{2}\right)$, along with the values of $f\left(x_{1}, x_{2}\right)$ during the optimization. Specifically, for each choice of ϵ, you need to plot two figures: (i) scatter plot showing (x_{1}, x_{2}) points for all iterations, where the x-axis if for x_{1} and the y-axis is for x_{2}; you need to mark the initial and final iterations in the plot. (ii) plot the curve of $f\left(x_{1}, x_{2}\right)$ vs. the number of iterations. Does the variation of your observed rate of convergence with ϵ agree with your expectation in part (c)? What happens with the simulations if you try $\alpha=\frac{1}{M}$? Does the algorithm still converge?

Problem 6. (10 points) Consider a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(a) Assume that f has Lipschitz gradients with Lipschitz constant L. In addition, f is also m-strongly convex. Prove the following inequality holds for all $x, y \in \mathbb{R}^{n}$

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{m L}{m+L}\|x-y\|^{2}+\frac{1}{m+L}\|\nabla f(x)-\nabla f(y)\|^{2}
$$

(b) Use the above inequality to show that the gradient descent method $x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right)$ with $\alpha=\frac{1}{L}$ satisfies the following convergence rate bound:

$$
\left\|x_{k}-x^{*}\right\| \leq\left(1-\frac{m}{L}\right)^{k}\left\|x_{0}-x^{*}\right\|
$$

where x^{*} is assumed to be the unique global minimizer of f.

