
ECE 490 (Introduction to Optimization) – Homework 3

Due: 11:59pm, March 8th

Problem 1. Consider Newton’s method with stepsize α, i.e.

xk+1 = xk − α(∇2f(xk))−1∇f(xk), α > 0.

(a) (15 points) Suppose we apply this method to the function f : R→ R given by f(x) = x4. Identify the range of
α for which the method converges. Show that for this range of α, the convergence is “linear”.

(b) (15 points) Suppose we choose α = 1 and apply this method to the function f : R → R given by f(x) =
log(ex + e−x). Note that f is convex with a unique minimum at x∗ = 0. Show that the Newton’s method for
this function iterates as

xk+1 = xk −
e4xk − 1

4e2xk
.

Run 5 steps of the above iteration with the following initializations: x0 = 1 and x0 = 1.1. You may use your
favorite programming environment (Matlab, Python, etc). Report your iterates for both cases. Does Newton’s
method converge?

(c) (10 points) Consider the ridge regression problem minx∈Rn
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, where λ > 0 and

(ai, bi) (for i = 1, 2, · · · , n) are given. If we run Newton’s method with α = 1 on this problem, what happens?
Does it converge? If so, how many steps are needed to get an accurate solution?

Problem 2. We have studied the back-propagation algorithm for computing the gradient of the empirical loss
corresponding to each data-point with respect to the weights of the neural network separately, with the understanding
that the gradient of the total empirical loss J with respect to the weights is simply the sum of the gradients of the
loss corresponding to each data-point. In this problem, you will develop a back-propagation algorithm for computing
the gradient of J directly.

(a) (20 points) Derive the back-propagation algorithm for directly computing the gradients:
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for all i, j, and m = 1, · · · ,M.

Hint: Using the chain rule:
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(b) (10 points) Is there any computational advantage (or disadvantage) of running the back-propagation algorithm
directly on J as opposed to running it on loss corresponding to the individual data-points? What is the advantage
of the stochastic gradient descent (SGD) method?

Problem 3. Either prove the following statements or provide a counterexample.

(a) (5 points) The set {x ∈ Rn : Ax = b} is convex for all matrices A ∈ Rk×n and b ∈ Rk.

(b) (5 points) For a convex function f : Rn → R, the set {x ∈ Rn : f(x) = r} is convex for r ∈ R.

(c) (10 points) For any positive semidefinite matrix Q ∈ Rn×n, the set {x ∈ Rn : xTQx ≤ 1} is convex.

(d) (10 points) Any µ-strongly convex function has to satisfy the following P-L inequality:

f(x)− f(x∗) ≤ 1

2µ
||∇f(x)||2,

where x∗ is the global min of f .
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