ECE 490 (Introduction to Optimization) - Homework 3

Due: 11:59pm, March 8th

Problem 1. Consider Newton's method with stepsize α, i.e.

$$
x_{k+1}=x_{k}-\alpha\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right), \alpha>0 .
$$

(a) (15 points) Suppose we apply this method to the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{4}$. Identify the range of α for which the method converges. Show that for this range of α, the convergence is "linear".
(b) (15 points) Suppose we choose $\alpha=1$ and apply this method to the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=$ $\log \left(e^{x}+e^{-x}\right)$. Note that f is convex with a unique minimum at $x^{*}=0$. Show that the Newton's method for this function iterates as

$$
x_{k+1}=x_{k}-\frac{e^{4 x_{k}}-1}{4 e^{2 x_{k}}}
$$

Run 5 steps of the above iteration with the following initializations: $x_{0}=1$ and $x_{0}=1.1$. You may use your favorite programming environment (Matlab, Python, etc). Report your iterates for both cases. Does Newton's method converge?
(c) (10 points) Consider the ridge regression problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left\{\left(a_{i}^{T} x-b_{i}\right)^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}\right\}$, where $\lambda>0$ and $\left(a_{i}, b_{i}\right)$ (for $i=1,2, \cdots, n$) are given. If we run Newton's method with $\alpha=1$ on this problem, what happens? Does it converge? If so, how many steps are needed to get an accurate solution?

Problem 2. We have studied the back-propagation algorithm for computing the gradient of the empirical loss corresponding to each data-point with respect to the weights of the neural network separately, with the understanding that the gradient of the total empirical loss J with respect to the weights is simply the sum of the gradients of the loss corresponding to each data-point. In this problem, you will develop a back-propagation algorithm for computing the gradient of J directly.
(a) (20 points) Derive the back-propagation algorithm for directly computing the gradients:

$$
\frac{\partial J}{\partial W_{i, j}^{(m)}} \text { and } \frac{\partial J}{\partial b_{i}^{(m)}} \text { for all } i, j, \text { and } m=1, \cdots, M .
$$

Hint: Using the chain rule:

$$
\frac{\partial J}{\partial W_{i, j}^{(M)}}=\sum_{n=1}^{N} \frac{\partial J}{\partial y_{i}^{(M)}[n]} \frac{\partial y_{i}^{(M)}[n]}{\partial W_{i, j}^{(M)}} .
$$

(b) (10 points) Is there any computational advantage (or disadvantage) of running the back-propagation algorithm directly on J as opposed to running it on loss corresponding to the individual data-points? What is the advantage of the stochastic gradient descent (SGD) method?

Problem 3. Either prove the following statements or provide a counterexample.
(a) (5 points) The set $\left\{x \in \mathbb{R}^{n}: A x=b\right\}$ is convex for all matrices $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^{k}$.
(b) (5 points) For a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the set $\left\{x \in \mathbb{R}^{n}: f(x)=r\right\}$ is convex for $r \in \mathbb{R}$.
(c) (10 points) For any positive semidefinite matrix $Q \in \mathbb{R}^{n \times n}$, the set $\left\{x \in \mathbb{R}^{n}: x^{T} Q x \leq 1\right\}$ is convex.
(d) (10 points) Any μ-strongly convex function has to satisfy the following P-L inequality:

$$
f(x)-f\left(x^{*}\right) \leq \frac{1}{2 \mu}\|\nabla f(x)\|^{2}
$$

where x^{*} is the global min of f.

