ECE 490 (Introduction to Optimization) - Homework 4

Due: 11:59pm, April 5

Problem 1. (15 points) Consider the problem of minimizing the function $f(x)=\|x\|^{2}$ subject to the constraint $x \in \mathcal{S}$, where $\mathcal{S}=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$. Here $A \in \mathbb{R}^{m \times n}(m \leq n)$ has m linearly independent rows. Show that the minimizer x^{*} is given by $x^{*}=A^{\top}\left(A A^{\top}\right)^{-1} b$.

Problem 2. (20 points) Consider the hyperplane defined as $\mathcal{S}=\left\{z \in \mathbb{R}^{n}: A z=b\right\}$, where $A \in \mathbb{R}^{m \times n}$ has m linearly independent rows $(m \leq n)$. Prove that
(a) $A A^{\top}$ is invertible.
(b) The projection of $x \in \mathbb{R}^{n}$ on \mathcal{S} is given by

$$
z^{*}=x-A^{\top}\left(A A^{\top}\right)^{-1}(A x-b)
$$

Problem 3. (15 points) Use the Lagrange multiplier theorem to solve the following problems of the form

$$
\operatorname{minimize} f(x), \text { subject to } h(x)=0
$$

(The i-th entry of x is denoted as x_{i}.)
(a) $f(x)=\|x\|^{2}$ and $h(x)=\sum_{i=1}^{n} x_{i}-2$
(b) $f(x)=\sum_{i=1}^{n} x_{i}$, and $h(x)=\|x\|^{2}-1$
(c) $f(x)=\|x\|^{2}$, and $h(x)=x^{\top} Q x-1$, where Q is positive definite.

Problem 4. (15 points) Consider the problem of minimizing the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as:

$$
f(x)=f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}-x_{1} x_{2}
$$

Minimize f subject to the constraint $2 x_{1}+x_{2}=2$.
Hint: Don't forget to check regularity conditions when applying the Lagrange multiplier theorem.

Problem 5. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as $f\left(x_{1}, x_{2}\right)=2\left(x_{1}-1\right)^{2}+4\left(x_{2}-2\right)^{2}+\sin \left(x_{1}\right)-\cos \left(x_{2}\right)$.
(a) (5 points) Derive the gradient and Hessian of $f\left(x_{1}, x_{2}\right)$, and determine if the objective is convex.
(b) (10 points) Write down the update rule of projected Newton method with stepsize η and projection in the unit square, $\mathcal{S}=\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \leq 1\right.$, and $\left.\left|x_{2}\right| \leq 1\right\}$. How to compute the projection in this case?
Hint: The projected Newton method just alternates between Newton's update and the projection step.
(c) (20 points) Implement the above projected Newton method in Python or MATLAB. Run the optimization from $\left(x_{1}, x_{2}\right)=(-1,-1)$ with learning rate $\eta=1$. Plot the trajectories in the parameter space, i.e., the space of $\left(x_{1}, x_{2}\right)$, along with the values of $f\left(x_{1}, x_{2}\right)$ during the optimization. Specifically, you need to plot two figures: (i) scatter plot showing $\left(x_{1}, x_{2}\right)$ points for all iterations, where the x-axis if for x_{1} and the y -axis is for x_{2}; you need to mark the initial and final iterations in the plot. (ii) plot the curve of $f\left(x_{1}, x_{2}\right)$ vs. the number of iterations. Does the algorithm converge?

