ECE 490 (Introduction to Optimization) - Homework 6

Due: 11:59pm, May 3

Problem 1. (10 points) Consider the function $g(y, z)$, with $y \in \mathcal{Y}$ and $z \in \mathcal{Z}$. Assuming both sides of the inequality exist, show that:

$$
\max _{y \in \mathcal{Y}} \min _{z \in \mathcal{Z}} g(y, z) \leq \min _{z \in \mathcal{Z}} \max _{y \in \mathcal{Y}} g(y, z)
$$

Problem 2. (20 points) Find the dual of the following linear program:

$$
\begin{align*}
\operatorname{minimize} & x_{1}+x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \geq 1 \\
& 3 x_{1}+x_{2} \leq 5 \tag{1}\\
& -x_{1}+x_{2} \leq 8
\end{align*}
$$

Does the strong duality hold?

Problem 3. (15 points) Consider the following optimization problem:

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x \\
\text { subject to } & A x=b \tag{2}
\end{align*}
$$

where $Q \in \mathbb{R}^{n \times n}$ is positive definite. What is the dual problem for (2)

Problem 4. (20 points) Consider the optimization problem

$$
\begin{align*}
\operatorname{minimize} & f(x) \tag{3}\\
\text { subject to } & h(x)=0
\end{align*}
$$

Recall that the augmented Lagrangian is defined as

$$
L_{c}(x, \lambda)=f(x)+\lambda^{\top} h(x)+c\|h(x)\|^{2}, \quad \lambda \in \mathbb{R}^{m}, c>0
$$

Now suppose $\left\{c_{k}\right\}$ is a sequence of positive numbers that increases to ∞ as $k \rightarrow \infty$, and let

$$
x^{(k)} \in \arg \min _{x} L_{c_{k}}(x, \lambda)
$$

Then show that every limit point \bar{x} of the sequence $\left\{x^{(k)}\right\}$ is a global minimum for (3) (assuming that the global min exists).

Problem 5. (15 points) Prove the following properties of subgradients (here f, f_{1} and f_{2} are convex functions):
(a) Scaling: For scalar $a>0, \partial(a f)=a \partial f$, i.e., g is a subgradient of f at x if and only if $a g$ is a subgradient of $a f$ at x.
(b) Addition: If g_{1} is a subgradient of f_{1} at x, and g_{2} is a subgradient of f_{2} at x, then $g_{1}+g_{2}$ is subgradient of $f_{1}+f_{2}$ at x.
(c) Affine Combination: Let $h(x)=f(A x+b)$, with A being a square, invertible matrix. Then $\partial h(x)=A^{\top} \partial f(A x+b)$, i.e., g is a subgradient of f at $\mathrm{Ax}+\mathrm{b}$ if and only if $A^{\top} g$ is a subgradient of h at x.

Problem 6. (20 points) Consider the following convex function:

$$
f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|
$$

Write down your conjecture for the subdifferential $\partial f(x)$ for $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$. Prove that your conjecture is indeed correct. (Don't forget to give the converse argument.)

