ECE 490 (Introduction to Optimization) - Homework 2

Problem 1. Convexity:

(a) We showed in class that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function, then:

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{n}: f(x) \leq a\right\}
$$

is a convex set for all $a \in \mathbb{R}$. Give an example to illustrate that if f is not convex, the above set \mathcal{S} may not be convex.
(b) Define the ℓ_{p} norm of a vector $x \in \mathbb{R}^{n}$ as

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Consider the sets $\mathcal{S}:=\left\{x \in \mathbb{R}^{2}:\|x\|_{p} \leq 1\right\}$ for $p=1,2$. Are these "unit p-norm balls" convex?
(c) Suppose $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{2}^{2}+0.5 x_{3}^{2}+2 x_{1} x_{3}+3 x_{2} x_{3}+10 x_{1}+5 x_{2}+6 x_{3}+20$. Is f convex, concave, or neither?
(d) Is the following set convex?

$$
\mathcal{S}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0, \text { and } x_{1} \log \left(x_{1}\right)+x_{2} \log \left(x_{2}\right) \leq 4\right\} .
$$

(e) Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave increasing function. Prove that $f(g(x))$ is a concave function.

Problem 2. Minimization of Quadratic Functions:
(a) Suppose $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+2 x_{2} x_{3}-2 x_{1}-2 x_{2}-2 x_{3}+5$. Find the minimum and maximum of f over \mathbb{R}^{3} if they exist. (You are expected to do the calculations by hand.)
(b) Consider the positive definite quadratic minimization problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} Q x$ where Q is a positive definite matrix. Apply the gradient method with the stepsize α_{k} chosen by the direct line search. What is α_{k} ? Write out α_{k} as a function of Q and x_{k}.
(c) Consider the ridge regression problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left\{\left(a_{i}^{T} x-b_{i}\right)^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}\right\}$, where $\lambda>0$ and (a_{i}, b_{i}) (for $i=1,2, \cdots, n)$ are given. What is the optimal solution x^{*} ? is the optimal solution unique?

Problem 3. Consider the problem of minimizing the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as:

$$
f(x)=f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+2 x_{2}^{4}
$$

. Use steepest descent with Armijo's Rule, with parameters $\tilde{\alpha}=1, \sigma=0.05$, and $\beta=0.5$. Find α_{k} if $x_{k}=(1,0)$.

Problem 4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function which is bounded below, i.e. $f(x) \geq f_{\min }$ for all x with $f_{\text {min }}$ being finite. Consider the following version of gradient descent method with constant step size

$$
x_{k+1}=x_{k}-\alpha D \nabla f\left(x_{k}\right)
$$

where D is a positive definite matrix. Let $\lambda_{\min }>0$ and $\lambda_{\max }>0$ denote the minimum and maximum eigenvalues of D. Assume that f has Lipschitz gradients with Lipschitz constant L. Show that if

$$
0<\alpha<\frac{2 \lambda_{\min }}{L \lambda_{\max }^{2}}
$$

then

$$
\lim _{k \rightarrow \infty} \nabla f\left(x_{k}\right)=0
$$

