ECE 490 (Introduction to Optimization) - Homework 3

Problem 1. Consider Newton's method with stepsize α, i.e.

$$
x_{k+1}=x_{k}-\alpha\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right), \alpha>0 .
$$

(a) Suppose we apply this method to the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{4}$. Identify the range of α for which the method converges. Show that for this range of α, the convergence is "linear".
(b) Suppose we choose $\alpha=1$ and apply this method to the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\log \left(e^{x}+e^{-x}\right)$. Note that f is convex with a unique minimum at $x^{*}=0$. Show that the Newton's method for this function iterates as

$$
x_{k+1}=x_{k}-\frac{e^{4 x_{k}}-1}{4 e^{2 x_{k}}} .
$$

(Extra task: This is not related to the quiz. Run 5 steps of the above iteration with the following initializations: $x_{0}=1$ and $x_{0}=1.1$. You may use your favorite programming environment (Matlab, Python, etc). Report your iterates for both cases. Does Newton's method converge?)
(c) Consider the ridge regression problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left\{\left(a_{i}^{T} x-b_{i}\right)^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}\right\}$, where $\lambda>0$ and (a_{i}, b_{i}) (for $i=1,2, \cdots, n)$ are given. If we run Newton's method with $\alpha=1$ on this problem, what happens? Does it converge? If so, how many steps are needed to get an accurate solution?

Problem 2. Consider the use of Newton method to minimize $f(x)=-\cos (x)$. Choose the stepsize to be 1. Write x_{1} and x_{2} as a function of the initial point x_{0}. Show that there exists $x_{0} \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ such that $x_{2}=x_{0}$. For this x_{0}, does Newton's method converge?

Problem 3. Let \mathcal{S} be a nonempty closed convex set in \mathbb{R}^{n}.
(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly convex function. Show that if x^{*} is a minimizer of f over \mathcal{S}, it must be unique.
(b) Find an example of an \mathcal{S} and a strictly convex $f: \mathcal{S} \rightarrow \mathbb{R}$ such that there does not exists a minimizer of f over \mathcal{S}. (Hint: Think of an unbounded set that is closed and convex.)
(c) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly convex function. If f is bounded below over \mathcal{S} (i.e., $\left.\inf _{x \in \mathcal{S}} f(x)>-\infty\right)$, and $f(x) \rightarrow \infty$ as $\|x\| \rightarrow \infty$, then show that a minimizer of f over \mathcal{S} always exists and is unique.
(d) Use parts (a) and (c) appropriately to show that the projection of a point in \mathbb{R}^{n} on \mathcal{S} exists and is unique.

Problem 4. Suppose $\mathcal{S}=[-1,1]$. Given any arbitrary $x \in \mathbb{R}$, how to compute the projection onto \mathcal{S} ?

