ECE 490 (Introduction to Optimization) – Homework 4

Problem 1. Consider the problem of minimizing the function $f(x) = ||x||^2$ subject to the constraint $x \in S$, where $S = \{x \in \mathbb{R}^n : Ax = b\}$. Here $A \in \mathbb{R}^{m \times n}$ $(m \le n)$ has m linearly independent rows. Show that the minimizer x^* is given by $x^* = A^{\top}(AA^{\top})^{-1}b$.

Problem 2. Consider the hyperplane defined as $S = \{z \in \mathbb{R}^n : Az = b\}$, where $A \in \mathbb{R}^{m \times n}$ has *m* linearly independent rows $(m \leq n)$. Prove that

- (a) AA^{\top} is invertible.
- (b) The projection of $x \in \mathbb{R}^n$ on \mathcal{S} is given by

$$z^* = x - A^{\top} (AA^{\top})^{-1} (Ax - b).$$

Problem 3. Use the Lagrange multiplier theorem to solve the following problems of the form

minimize f(x), subject to h(x) = 0

(The *i*-th entry of x is denoted as x_i .)

- (a) $f(x) = ||x||^2$ and $h(x) = \sum_{i=1}^n x_i 2$
- (b) $f(x) = \sum_{i=1}^{n} x_i$, and $h(x) = ||x||^2 1$