ECE 490 (Introduction to Optimization) – Homework 6

Problem 1. Consider the function g(y, z), with $y \in \mathcal{Y}$ and $z \in \mathcal{Z}$. Assuming both sides of the inequality exist, show that:

$$\max_{y \in \mathcal{Y}} \min_{z \in \mathcal{Z}} g(y, z) \le \min_{z \in \mathcal{Z}} \max_{y \in \mathcal{Y}} g(y, z)$$

Problem 2. Find the dual of the following linear program:

minimize
$$x_1 + x_2$$

subject to $x_1 + 2x_2 \ge 1$,
 $3x_1 + x_2 \le 5$,
 $-x_1 + x_2 \le 8$.
(1)

Does the strong duality hold?

Problem 3. Consider the following optimization problem:

$$\begin{array}{l} \text{minimize} \quad x^{\top}Qx \\ \text{subject to} \quad Ax = b, \end{array} \tag{2}$$

where $Q \in \mathbb{R}^{n \times n}$ is positive definite. What is the dual problem for (2)

Problem 4. Consider the optimization problem

$$\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & h(x) = 0 \end{array} \tag{3}$$

Recall that the augmented Lagrangian is defined as

$$L_c(x,\lambda) = f(x) + \lambda^{\top} h(x) + c ||h(x)||^2, \ \lambda \in \mathbb{R}^m, \ c > 0.$$

Now suppose $\{c_k\}$ is a sequence of positive numbers that increases to ∞ as $k \to \infty$, and let

$$x^{(k)} \in \arg\min L_{c_k}(x,\lambda)$$

Then show that every limit point \bar{x} of the sequence $\{x^{(k)}\}$ is a global minimum for (3) (assuming that the global min exists).

Problem 5. Consider the constrained minimization problem

minimize
$$x + y$$

subject to $z \ge 0$,
 $x + z = 10$,
 $z^2 \le x + y$

Is this a convex optimization problem? Explain your answer. (You don't have to solve the minimization problem.)