ECE 490 (Introduction to Optimization) - Homework 6

Problem 1. Consider the function $g(y, z)$, with $y \in \mathcal{Y}$ and $z \in \mathcal{Z}$. Assuming both sides of the inequality exist, show that:

$$
\max _{y \in \mathcal{Y}} \min _{z \in \mathcal{Z}} g(y, z) \leq \min _{z \in \mathcal{Z}} \max _{y \in \mathcal{Y}} g(y, z)
$$

Problem 2. Find the dual of the following linear program:

$$
\begin{align*}
\operatorname{minimize} & x_{1}+x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \geq 1 \\
& 3 x_{1}+x_{2} \leq 5 \tag{1}\\
& -x_{1}+x_{2} \leq 8
\end{align*}
$$

Does the strong duality hold?

Problem 3. Consider the following optimization problem:

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x \\
\text { subject to } & A x=b \tag{2}
\end{align*}
$$

where $Q \in \mathbb{R}^{n \times n}$ is positive definite. What is the dual problem for (2)

Problem 4. Consider the optimization problem

$$
\begin{align*}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)=0 \tag{3}
\end{align*}
$$

Recall that the augmented Lagrangian is defined as

$$
L_{c}(x, \lambda)=f(x)+\lambda^{\top} h(x)+c\|h(x)\|^{2}, \quad \lambda \in \mathbb{R}^{m}, \quad c>0
$$

Now suppose $\left\{c_{k}\right\}$ is a sequence of positive numbers that increases to ∞ as $k \rightarrow \infty$, and let

$$
x^{(k)} \in \arg \min _{x} L_{c_{k}}(x, \lambda)
$$

Then show that every limit point \bar{x} of the sequence $\left\{x^{(k)}\right\}$ is a global minimum for (3) (assuming that the global min exists).

Problem 5. Consider the constrained minimization problem

$$
\begin{aligned}
\operatorname{minimize} & x+y \\
\text { subject to } & z \geq 0 \\
& x+z=10 \\
& z^{2} \leq x+y
\end{aligned}
$$

Is this a convex optimization problem? Explain your answer. (You don't have to solve the minimization problem.)

