ECE 490 (Introduction to Optimization) - Homework 7

Problem 1. Prove the following properties of subgradients (here f, f_{1} and f_{2} are convex functions):
(a) Scaling: For scalar $a>0, \partial(a f)=a \partial f$, i.e., g is a subgradient of f at x if and only if $a g$ is a subgradient of $a f$ at x.
(b) Addition: If g_{1} is a subgradient of f_{1} at x, and g_{2} is a subgradient of f_{2} at x, then $g_{1}+g_{2}$ is subgradient of $f_{1}+f_{2}$ at x.
(c) Affine Combination: Let $h(x)=f(A x+b)$, with A being a square, invertible matrix. Then $\partial h(x)=A^{\top} \partial f(A x+b)$, i.e., g is a subgradient of f at $\mathrm{Ax}+\mathrm{b}$ if and only if $A^{\top} g$ is a subgradient of h at x.

Problem 2. Consider the following convex function:

$$
f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|
$$

Write down your conjecture for the subdifferential $\partial f(x)$ for $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$. Prove that your conjecture is indeed correct. (Don't forget to give the converse argument.)

Problem 3. If we apply the subgradient method with stepsize $\alpha_{k}=\frac{1}{\sqrt{k+1}}$ to minimize the function in Problem 2, does the method always converge to the global minimum?

